Refine Your Search

Topic

Author

Search Results

Technical Paper

Unregulated Emissions from Three-Way Catalyst Cars

1977-02-01
770369
In response to more stringent emission requirements, catalysts for reducing NO to molecular nitrogen were developed. One of the most promising of these, the three-way catalyst, has been the subject of an EPA study to determine if it produces new tailpipe contaminants. This study and its results are described.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Environmental Implications of Manganese as an Alternate Antiknock

1975-02-01
750926
Methylcyclopentadienylmanganese tricarbonyl (MMT) while originally marketed in the late 50's and early 60's as a secondary antiknock to leaded fuels, is presently being marketed as a primary antiknock targeted for the EPA required lead-free gasoline grade tailored for use in catalyst-equipped vehicles. This paper reviews and discusses new information related to the effect of manganese gasoline additives on the performance of catalysts, regulated emissions, and several currently unregulated emissions. In addition, estimates of human exposures to automotive-generated manganese particulate and the toxicological characteristics of manganese are discussed as they related to an assessment of the potential public health consequences should manganese additives come into widespread use. EPA's position regarding the use of manganese additives is presented and discussed.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Technical Paper

Sulfuric Acid Emissions from Light Duty Vehicles

1976-02-01
760034
This paper discusses the systems used by the Office of Mobile Source Air Pollution Control of EPA to measure and analyze automotive sulfuric acid emissions. This system involves mixing the entire vehicle exhaust with dilution air in a dilution tunnel. Sulfuric acid samples are collected by passing a small portion of the dilute exhaust through Fluoropore filters. The sulfuric acid content of the filters is determined by an automated barium chloranilate method. This paper also discusses test results from a number of advanced prototype vehicles including two stratified charge cars, a Dresser carburetor vehicle, three dual catalyst cars, and a 3-way catalyst car.
Technical Paper

Start Catalyst Systems Employing Heated Catalyst Technology for Control of Emissions from Methanol-Fueled Vehicles

1993-03-01
930382
EPA published the first results from evaluations of electrically heated catalyst (EHC) technology for light-duty automotive applications. Since then, a number of automakers, suppliers, and government agencies have published results from their heated catalyst development and evaluation programs. EPA has evaluated a number of start catalyst systems incorporating an EHC start catalyst followed by a larger, conventional main catalyst. These systems have proven very effective at reducing cold start related emissions from methanol vehicles at low mileage. This paper compares the results from several EHC + main catalyst evaluations conducted by EPA.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Operating Characteristics of Zirconia Galvanic Cells (Lambda Sensors) in Automotive Closed-Loop Emission Control Systems

1992-02-01
920289
Simple tests were performed to investigate the operating characteristics of zirconia galvanic cells (lambda sensors) in automotive closed loop “three-way” emission control systems. Commercially available cells were exposed to typical gaseous components of exhaust gas mixtures. The voltages generated by the cells were at their maximum values when hydrogen, and, in some instances, carbon monoxide, was available for reaction with atmospheric oxygen that migrated through the cells' ceramic thimbles in ionic form. This dependence of galvanic activity on the availability of these particular reducing agents indicated that the cells were voltaic devices which operated as oxidation/reduction reaction cells, rather than simple oxygen concentration cells.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Exhaust Emissions from In-Use Passenger Cars Equipped with Three-Way Catalysts

1980-06-01
800823
This paper presents the results of an exhaust emission testing program conducted by the U.S. Environmental Protection Agency. The test vehicles were 1978–1980 passenger cars of various makes and models. Each of the 686 vehicles tested was equipped with a three-way catalyst system and was certified to California standards. The purpose of the program was to gather information on current systems in customer use for projections on the ability of the three-way system to meet emission standards of the future. The results indicate that these systems are capable of achieving low emission levels although high levels are also possible due to defects, deterioration, or tampering.
Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

Emissions from Catalyst Cars Beyond 50 000 Miles and the Implications for the Federal Motor Vehicle Control Program

1978-02-01
780027
High mileage vehicles (in excess of 50,000 miles) contribute more than half of all vehicular emissions. With the new catalytic converter equipped cars, the proportional contribution of these vehicles may be even higher than for pre-catalyst vehicles. Thus a substantial portion of motor vehicle related air pollution may be caused by vehicles not subject to the manufacturer directed provisions of the Clean Air Act. This paper presents a modeling effort based on hypotheses and some preliminary data, and suggests some alternatives to combat this potential problem.
Technical Paper

Emission Patterns of Diesel-Powered Passenger Cars - Part II

1977-02-01
770168
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo[a]pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussed in terms of emission trends due to either fuel type or driving cycle influence.
Technical Paper

Effects of Steady-State and Transient Operation on Exhaust Emissions from Nonroad and Highway Diesel Engines

1998-09-14
982044
Six heavy-duty diesel engines were tested for exhaust emissions on the ISO 8-mode nonroad steady-state duty cycle and the U.S. FTP highway transient test cycle. Two of these engines were baseline nonroad engines, two were Tier 1 nonroad engines, and two were highway engines. One of the Tier 1 nonroad engines and both of the highway engines were also tested on three transient cycles developed for nonroad engines. In addition, published data were collected from an additional twenty diesel engines that were tested on the 8-mode as well as at least one transient test cycle. Data showed that HC and PM emissions from diesel engines are very sensitive to transient operation while NOx emissions are much less so. Although one of the nonroad transient duty cycles showed lower PM than the steady-state duty cycles, all four of the other cycles showed much higher PM emissions than the steady-state cycle.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Journal Article

Disassembly of Small Engine Catalytic Converters and Analysis of Washcoat Material for Platinum Group Metals by X-Ray Fluorescence Spectrometry

2014-06-02
2014-01-9078
The United States Environmental Protection Agency (U.S. EPA) National Enforcement Investigations Center (NEIC) has developed a test method for the analysis of washcoat material in small engine catalytic converters. Each small engine catalytic converter contains a metallic monolith. Each metallic monolith is removed from its outer casing, manually disassembled, and then separated into washcoat and substrate. The washcoat material is analyzed for platinum group metals (PGMs) using X-ray fluorescence (XRF) spectrometry. Results from the XRF analysis are used to calculate PGM ratios in the washcoat. During monolith disassembly, care is taken to minimize loss of washcoat or substrate, but some material is inevitably lost. The recovered washcoat mass does not necessarily equal the quantity of washcoat that was present in the intact catalytic converter.
X