Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Exploration of Support Methods for Tradespace Exploration

2023-04-11
2023-01-0117
Tradespace exploration (TSE) is an important aspect of the early stages of the design process, in which stakeholders search for the most optimal solutions within a design variable-bounded solution space. This decision-making process requires stakeholders to understand the trade-offs and compromises that may be required to choose a solution. In order for stakeholders to make these decisions appropriately, information must be presented in an efficient manner and should ensure that the trade-offs between solutions are clearly visible. Existing visualizations often struggle to elucidate these trade-offs, and can rapidly become difficult to understand as the dimensionality of the tradespace increases. In this paper, the benefits and drawbacks to these existing methods will be discussed. In addition, this paper will explore potential methods to improve information presentation for TSE, including framing, visual steering, and visualization options.
Technical Paper

Effects of Framing on Tradespace Exploration Decision-Making for Vehicle Design

2024-04-09
2024-01-2660
Tradespace exploration (TSE) describes the activity occurring early in the design process through which stakeholders explore a broad solution space in search of more-optimal alternatives. In doing so, these stakeholders attempt to maximize the utility inherent in the chosen solution while understanding the tradeoffs and compromises that may be required to find an acceptable solution. In the field of vehicle design, tradespaces are often comprised of vast amounts of alternatives which increases the complexity of the decision-making process. Additionally, the number of stakeholders has grown, as decision-makers seek to include more variety in both perspectives and expertise. As such, decision-making stakeholders can often find themselves working at odds and attempting to maximize vastly different objectives in the process. One way to rectify these contrasting viewpoints can be to intentionally introduce a group framing prior to the start of decision making.
Journal Article

Designing the Design Space: Evaluating Best Practices in Tradespace Exploration, Analysis and Decision-Making

2022-03-29
2022-01-0354
Determining the validity of the design space early in the conceptualization of a project can make the difference between project success and failure. Early assessment of technical feasibility, project risk, technical readiness and realistic performance expectations based on models with different levels of fidelity, uncertainty, and technical robustness is a challenging mission critical task for large procurement projects. Tradespace exploration uses model-based engineering analysis, design exploration methods, and multi-objective optimization techniques to enable project stakeholders to make informed decisions and tradeoffs concerning the scope, schedule, budget, performance and risk profile of a project. As the intersection with a number of project stakeholders, tradespace studies can provide a significant impact upon the direction and decision-making in a project.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Charging Load Estimation for a Fleet of Autonomous Vehicles

2024-04-09
2024-01-2025
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately.
X