Refine Your Search

Topic

Author

Search Results

Technical Paper

Optical Investigations on a Multiple Spark Ignition System for Lean Engine Operation

2016-04-05
2016-01-0711
The paper reports on the optical investigation of a multiple spark ignition system carried out in a closed vessel in inert gas, and in an optical access engine in firing condition. The ignition system features a plug-top ignition coil with integrated electronics which is capable of multi-spark discharges (MSD) with short dwell time. First, the ignition system has been characterized in constant ambient conditions, at different pressure levels. The profile of the energy released by the spark and the cumulated value has been determined by measuring the fundamental electrical parameters. A high speed camera has been used to visualize the time evolution of the electric arc discharge to highlight its shape and position variability. The multiple spark system has then been mounted on an optical access engine with port fuel injection (PFI) to study the combustion characteristics in lean conditions with single and multiple discharges.
Technical Paper

Numerical Simulations and Experimental Validation of an SCR System for Ultra Low NOx Applications

2021-09-21
2021-01-1222
Close-coupled aftertreatment systems (ATS) for automotive Diesel engines composed of DOC and SCR offer a significant potential in terms of pollutant emission control capability even with the introduction of more aggressive driving cycles and rigorous limits for type-approval tests. This is particularly important for incoming certification standards where the forecast is showing a trade-off towards ultra-low NOx emissions values. As the SCR system NOx conversion capability largely relies on both the UWS mixing device and on NOx sensors used to detect the actual NH3 slip and residual NOx concentration, developing numerical simulation tools for the analysis of the actual flow pattern and species concentration over peculiar sections of the exhaust system is crucial to support the ATS development process.
Technical Paper

Numerical Simulation of the Early Flame Development Produced by a Barrier Discharge Igniter in an Optical Access Engine

2021-09-05
2021-24-0011
Currently, conventional spark-ignition engines are unfit to satisfy the growing customer requirements on efficiency while complying with the legislations on pollutant emissions. New ignition systems are being developed to extend the engine stable operating range towards increasing lean conditions. Among these, the Radio-Frequency corona igniters represent an interesting solution for the capability to promote the combustion in a much wider region than the one involved by the traditional spark channel. Moreover, the flame kernel development is enhanced by means of the production of non-thermal plasma, where low-temperature active radicals are ignition promoters. However, at low pressure and at high voltage the low temperature plasma benefits can be lost due to occurrences of spark-like events. Recently, RF barrier discharge igniters (BDI) have been investigated for the ability to prevent the arc formation thanks to a strong-breakdown resistance.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Lean Combustion Analysis of a Plasma-Assisted Ignition System in a Single Cylinder Engine fueled with E85

2022-09-16
2022-24-0034
Engine research community is developing innovative strategies capable of reducing fuel consumption and pollutant emissions while ensuring, at the same time, satisfactory performances. Spark ignition engines operation with highly diluted or lean mixture is demonstrated to be beneficial for engine efficiency and emissions while arduous for combustion initiation and stability. Traditional igniters are unsuitable for such working conditions, therefore, advanced ignition systems have been developed to improve combustion robustness. To overcome the inherent efficiency limit of combustion engines, the usage of renewable fuels is largely studied and employed to offer a carbon neutral transition to a cleaner future. For such a reason, both innovative ignition systems and bio or E-fuels are currently being investigated as alternatives to the previous approaches. Within this context, the present work proposes a synergetic approach which combines the benefits of a biofuel blend, i.e.
Technical Paper

Investigations on Hydrogen Injections Using a Real-Fluid Approach

2023-04-11
2023-01-0312
Computational fluid dynamics is used with the aim to gain further insights of the hydrogen injection process in internal combustion engines. To this end, three-dimensional RANS simulations of hydrogen under-expanded jets under a variety of injection pressures and temperatures and chamber backpressure are performed. A numerical framework that accounts for real-fluid effects is used which includes accurate non-linear mixing rules for thermodynamic and transport properties with multiple species. Jet formation process, transition to turbulent regime, and mixing process are investigated which are key aspects for the design of efficient injection and combustion. Different simulations are discussed to investigate the structures in the near field, such as Mach disk, barrel, and reflected shocks. It is found that for direct injection applications, especially in high back-pressure cases, accounting for real fluid behavior of hydrogen-air mixtures is important for accurate predictions.
Journal Article

Instantaneous Flow Rate Testing with Simultaneous Spray Visualization of an SCR Urea Injector at Elevated Fluid Temperatures

2017-09-04
2017-24-0109
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
Technical Paper

Injection Rate Measurement of GDI Systems Operating against Sub-Atmospheric and Pressurized Downstream Conditions

2017-09-04
2017-24-0110
In order to optimize gasoline direct injection combustion systems, a very accurate control of the fuel flow rate from the injector must be attained, along with appropriate spray characteristics in terms of drop sizing and jets global penetration/diffusion in the combustion chamber. Injection rate measurement is therefore one of the crucial tasks to be accomplished in order both to develop direct injection systems and to properly match them with a given combustion system. Noticeably, the hydraulic characteristics of GDI injectors should be determined according to a non-intrusive measuring approach. Unfortunately, the operation of all conventional injection analyzers requires the injection in a volume filled with liquid and the application of a significant counter-pressure downstream of the injector. This feature prevents any operation with low pressure injection systems such as PFIs.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Experimental and Numerical Analysis of a Swirled Fuel Atomizer for an Aftertreatment Diesel Burner

2023-08-28
2023-24-0106
Emission legislation for light and heavy duty vehicles is requiring a drastic reduction of exhaust pollutants from internal combustion engines (ICE). Achieving a quick heating-up of the catalyst is of paramount importance to cut down cold start emissions and meet current and new regulation requirements. This paper describes the development and the basic characteristics of a novel burner for diesel engines exhaust systems designed for being activated immediately at engine cold start or during vehicle cruise. The burner is comprised of a swirled fuel dosing system, an air system, and an ignition device. The main design characteristics are presented, with a detailed description of the atomization, air-fuel interaction and mixture formation processes. An atomizer prototype has been extensively analyzed and tested in various conditions, to characterize the resulting fuel spray under cold-start and ambient operating conditions.
Technical Paper

Experimental and Numerical Analysis of Spray Evolution, Hydraulics and Atomization for a 60 MPa Injection Pressure GDI System

2018-04-03
2018-01-0271
In recent years, the GDI (Gasoline Direct Injection) technology has significantly spread over the automotive market under the continuous push toward the adoption of combustion systems featuring high thermodynamic conversion efficiency and moderate pollutant emissions. Following this path, the injection pressure level has been progressively increased from the initial 5-15 MPa level nowadays approaching 35 MPa. The main reason behind the progressive injection pressure increase in GDI engines is the improved spray atomization, ensuring a better combustion process control and lower soot emissions. On the other hand, increasing injection pressure implies more power absorbed by the pumping system and hence a penalty in terms of overall efficiency. Therefore, the right trade-off has to be found between soot formation tendency reduction thanks to improved atomization and the energetic cost of a high pressure fuel injection system.
Technical Paper

Experimental and Numerical Analysis of Latest Generation Diesel Aftertreatment Systems

2019-09-09
2019-24-0142
A comprehensive experimental and numerical analysis of two state-of-the-art diesel AfterTreatment Systems (ATS) for automotive applications is presented in this work. Both systems, designed to fulfill Euro 6 emissions regulations standards, consist of a closed-coupled Diesel Oxidation Catalyst (DOC) followed by a Selective Catalytic Reduction (SCR) catalyst coated on a Diesel Particulate Filter (DPF), also known as SCR on Filter (SCRoF or SCRF). While the two systems feature the same Urea Water Solution (UWS) injector, major differences could be observed in the UWS mixing device, which is placed upstream of the SCRoF, whose design represents a crucial challenge due to the severe flow uniformity and compact packaging requirements.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Experimental Investigation of a Port Fuel Injected Spark Ignition Engine Fuelled with Variable Mixtures of Hydrogen and Methane

2013-04-08
2013-01-0226
The paper describes an experimental research which addressed the study of a 4-cylinder, spark-ignited, port-fuel-injected, production engine modified for hydrogen-methane blend fueling. The original engine was a 2.8-liter, naturally aspirated, methane-fuelled engine. The engine modifications included two fuel injectors per port and ECU replacement for controlling lean burn combustion and enabling real-time variation of the fuel blend, based on an alpha-N mapping approach. Since hydrogen infrastructures are an issue and its production costs are still today very high, pure hydrogen usage is not a viable solution for near future vehicles. In view of this, in the present paper, the maximum volumetric concentration of hydrogen in methane has been set to 35% (which on a mass basis corresponds to 6.3%). The variability of the fuel mixture has been achieved by installing two separate fuel lines connected to two fuel rails: a total of 8 injectors are installed.
Technical Paper

Experimental High Temperature Analysis of a Low-Pressure Diesel Spray for DPF Regeneration

2019-09-09
2019-24-0035
In the current automotive scenario, particulate filter technology is mandatory in order to attain emission limits in terms of particulate matter for diesel engines. Despite the fact that the Diesel Particulate Filter (DPF) is often considered a mature technology, significant issues can result from the use of the engine fuel injectors to introduce into the exhaust pipe the fuel needed to ignite the particulate matter accumulated in the filter during its regeneration. The most important issue is lubricant oil dilution with fuel as a consequence of significant spray impact on the cylinder liner. As an alternative, the fuel required to start DPF regeneration can be introduced in the exhaust pipe by an auxiliary low-pressure injector spraying in the hot exhaust gas stream.
Journal Article

Experimental Assessment of a Novel Instrument for the Injection Rate Measurement of Port Fuel Injectors in Realistic Operating Conditions

2017-03-28
2017-01-0830
In the present paper an innovative approach for the shot-to-shot hydraulic characterization of low pressure injection systems is experimentally assessed. The proposed methodology is an inverse application of the Zeuch’s method, which in this case is applied to a closed volume upstream the injector instead of downstream of it as in conventional injection analyzers. By this approach, the well-known constraint of having a finite volume pressurized with the injected liquid downstream the injector is circumvented. As a consequence, with the proposed instrument low pressure injectors - such as PFI, fed with gasoline or water, SCR injectors - can operate with the prescribed upstream-downstream pressure differential. Further, the injector can spray directly in atmosphere or in any ambient at arbitrary pressure and temperature conditions, allowing the simultaneous application of other diagnostics such as imaging, momentum flux measurement or sizing instruments.
Technical Paper

Experimental Analysis of the Urea-Water Solution Temperature Effect on the Spray Characteristics in SCR Systems

2015-09-06
2015-24-2500
One of the favored automotive exhaust aftertreatment solutions used for nitrogen oxides (NOx) emissions reductions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution (AUS-32) into the exhaust. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions. Understanding the spray performance of the AUS-32 injector is critical to proper optimization of the SCR injection system. Results were previously presented from imaging of an AUS-32 injector spray under hot exhaust conditions at the injector spray exit for an exhaust injection application.
Technical Paper

Experimental Analysis of Fuel and Injector Body Temperature Effect on the Hydraulic Behavior of Latest Generation Common Rail Injection Systems

2018-04-03
2018-01-0282
The present paper describes the effect of thermal conditions on the hydraulic behavior of Diesel common rail injectors, with a particular focus on low temperatures for fuel and injector body. The actual injection system thermal state can significantly influence both the injected quantity and the injection shape, requiring proper amendments to the base engine calibration in order to preserve the combustion efficiency and pollutant emissions levels. In particular, the introduction of the RDE (Real Driving Emission) test cycle widens the effective ambient temperature range for the homologation cycle, this way stressing the importance of the thermal effects analysis. An experimental test bench was developed in order to characterize the injector in an engine-like configuration, i.e. fuel pump, piping, common rail, pressure control system and injectors.
X