Refine Your Search

Topic

Author

Search Results

Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Toy Model: A Naïve ML Approach to Hydrogen Combustion Anomalies

2024-04-09
2024-01-2608
Predicting and preventing combustion anomalies leads to safe and efficient operation of the hydrogen internal combustion engine. This research presents the application of three machine learning (ML) models – K-Nearest Neighbors (KNN), Random Forest (RF) and Logistic Regression (LR) – for the prediction of combustion anomalies in a hydrogen internal combustion engine. A small experimental dataset was used to train the models and posterior experiments were used to evaluate their performance and predicting capabilities (both in operating points -speed and load- within the training dataset and operating points in other areas of the engine map). KNN and RF exhibit superior accuracy in classifying combustion anomalies in the training and testing data, particularly in minimizing false negatives, which could have detrimental effects on the engine.
Technical Paper

Surrogate Fuel Formulation to Improve the Dual-Mode Dual-Fuel Combustion Operation at Different Operating Conditions

2020-09-15
2020-01-2073
Dual-mode dual-fuel combustion is a promising combustion concept to achieve the required emissions and CO2 reductions imposed by the next standards. Nonetheless, the fuel formulation requirements are stricter than for the single-fuel combustion concepts as the combustion concept relies on the reactivity of two different fuels. This work investigates the effect of the low reactivity fuel sensitivity (S=RON-MON) and the octane number at different operating conditions representative of the different combustion regimes found during the dual-mode dual-fuel operation. For this purpose, experimental tests were performed using a PRF 95 with three different sensitivities (S0, S5 and S10) at operating conditions of 25% load/950 rpm, 50%/1800 rpm and 100%/2200 rpm. Moreover, air sweeps varying ±10% around a reference air mass were performed at 25%/1800 rpm and 50%/1800 rpm. Conventional diesel fuel was used as high reactivity fuel in all the cases.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Technical Paper

Soot Characterization of Diesel/Gasoline Blends Injected through a Single Injection System in CI engines

2017-09-04
2017-24-0048
In the past few years’ various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Technical Paper

Quasi-1D Analysis of n-Dodecane Split Injection Process

2022-03-29
2022-01-0506
Split injection processes have been analyzed by means of a Quasi-1D spray model that has been recently coupled to a laminar tabulated unsteady-flamelet progress-variable (UFPV) combustion model. The modelling approach can predict ignition delay and lift-off for long injection profiles, and it is now extended to a two-pulse injection scheme. In spite of the simplicity of the approach, relevant phenomena are adequately reproduced. In particular, the faster penetration of the second injection pulse compared to the first one is captured by the model both under inert and reacting conditions. The second pulse ignites much faster than the first one due to the injection into the remnants of the first one, where high temperature oxygen-depleted regions can be found. Ignition of the second pulse happens as soon as the first pulse reaches this region, with a faster low- to high-temperature transition.
Journal Article

Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled with Diesel and Gasoline at Different Engine Speeds

2017-09-04
2017-24-0085
This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines the port fuel injection of low-reactive/gasoline-like fuels with direct injection of highly reactive/diesel-like fuels. The particulates size distributions from 5-250 nm were measured using a scanning mobility particle sizer at six engine speeds, from 950 to 2200 rpm, and 25% engine load. The same procedure was followed for conventional diesel combustion. The study was performed in a single-cylinder engine derived from a stock medium-duty multi-cylinder diesel engine of 15.3:1 compression ratio. The combustion strategy proposed during the tests campaign was limited to accomplish both mechanical and emissions constraints. The results confirms that reactivity controlled compression ignition promotes ultra-low levels of nitrogen oxides and smoke emissions in the points tested.
Technical Paper

PIV and DBI Experimental Characterization of Air Flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston

2019-09-09
2019-24-0100
With demanding emissions legislations and the need for higher efficiency, new technologies for compression ignition engines are in development. One of them relies on reducing the heat losses of the engine during the combustion process as well as to devise injection strategies that reduce soot formation. Therefore, it is necessary a better comprehension about the turbulent kinetic energy (TKE) distribution inside the cylinder and how it is affected by the interaction between air flow motion and fuel spray. Furthermore, new diesel engines are characterized by massive decrease of NOx emissions. Therefore, considering the well-known NOx-soot trade-off, it is necessary a better comprehension and overall quantification of soot formation and how the different injection strategies can impact it.
Technical Paper

Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation

2021-04-06
2021-01-0423
Low pressure exhaust gases recirculation (LP-EGR) is becoming a state-of-the-art technique for Nitrogen oxides (NOx) reduction in compression ignited (CI) engines. However, despite the pollutant reduction benefits, LP-EGR suffers from strong non-linearities and delays which are difficult to handle, resulting in reduced engine performance under certain conditions. Measurement and observation of oxygen concentration at the intake have been a research topic over the past few years, and it may be critical for transition phases (from low pressure to high pressure EGR). Here, an adequate selection of models and sensors is essential to obtain a precise and fast measurement for control purposes. The present paper analyses different sensor configurations, with oxygen concentration measurements at the intake and exhaust manifold and combines observation techniques with sensor models to determine the potential of each configuration.
Technical Paper

On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques

2021-04-06
2021-01-0519
Dual-fuel combustion engines have shown the potential to extend the operating range of Homogeneous Charge Compression Ignition (HCCI) by using several combustion modes, e.g. Reactivity Controlled Compression Ignition (RCCI) at low/medium load, and Partially Premixed Compression (PPC) at high load. In order to optimize the combustion mode operation, the respective sensitivity to the control inputs must be addressed. To this end, in this work the extremum seeking algorithm has been investigated. By definition, this technique allows to detect the control input authority over the system by perturbing its value by a known periodic signal. By analyzing the system response and calculating its gradient, the control input can be adjusted to reach optimal operation. This method has been applied to a dual-fuel engine under fully, highly and partially premixed conditions where the feedback information was provided by in-cylinder pressure and NOx sensors.
Technical Paper

OMEx Fuel and RCCI Combustion to Reach Engine-Out Emissions Beyond the Current EURO VI Legislation

2021-09-05
2021-24-0043
Emissions regulations for engine and vehicle manufacturers are bound to become more limiting to prevent greenhouse gas emissions and mitigate the negative effects that potentiate global warming. To fulfill the energy demand necessary in the transportation sector for the short-to-medium term, a parallel optimization of the internal combustion engine, powertrain and fuels is necessary. The combination of novel combustion modes like the reactivity-controlled compression ignition (RCCI), that seeks the benefits of both compression ignition and spark ignition engines, with the so-called e-fuels, that reduce the carbon footprint from well-to-wheel, is worth exploring. This work investigates the potential of the RCCI concept using OMEx-gasoline to reduce the engine-out emissions beyond the current EURO VI legislation. To do so, eight representative operating conditions from several driving cycles for heavy-duty vehicles will be explored experimentally.
Technical Paper

Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts

2017-09-04
2017-24-0101
Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Numerical Optimization of the Combustion System of a HD Compression Ignition Engine Fueled with DME Considering Current and Future Emission Standards

2018-04-03
2018-01-0247
A genetic algorithm (GA) optimization methodology is applied to the design of the combustion system of a heavy-duty (HD) Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional diffusion-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric combustion system coupled with a three way catalyst (TWC) to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The GA was linked to the KIVA CFD code and an automated grid generation tool to perform a single-objective optimization. The target of the optimizations is to improve net indicated efficiency (NIE) while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels.
Technical Paper

Numerical Modeling of Hydrogen Combustion Using Preferential Species Diffusion, Detailed Chemistry and Adaptive Mesh Refinement in Internal Combustion Engines

2023-08-28
2023-24-0062
Mitigating human-made climate change means cutting greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which causes climate change. One approach to achieving this is to move to a carbon-free economy where carbon emissions are offset by carbon removal or sequestration. Transportation is a significant contributor to CO2 emissions, so finding renewable alternatives to fossil fuels is crucial. Green hydrogen-fueled engines can reduce the carbon footprint of transportation and help achieve a carbon-free economy. However, hydrogen combustion is challenging in an internal combustion engine due to flame instabilities, pre-ignition, and backfire. Numerical modeling of hydrogen combustion is necessary to optimize engine performance and reduce emissions. In this work, a numerical methodology is proposed to model lean hydrogen combustion in a turbocharged port fuel injection (PFI) spark-ignition (SI) engine for automotive applications.
Journal Article

Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control

2018-04-03
2018-01-0193
It is challenging to develop highly efficient and clean engines while meeting user expectations in terms of performance, comfort, and drivability. One of the critical aspects in this regard is combustion noise control. Combustion noise accounts for about 40 percent of the overall engine noise in typical turbocharged diesel engines. The experimental investigation of noise generation is difficult due to its inherent complexity and measurement limitations. Therefore, it is important to develop efficient numerical strategies in order to gain a better understanding of the combustion noise mechanisms. In this work, a novel methodology was developed, combining computational fluid dynamics (CFD) modeling and genetic algorithm (GA) technique to optimize the combustion system hardware design of a high-speed direct injection (HSDI) diesel engine, with respect to various emissions and performance targets including combustion noise.
Technical Paper

Numerical Approach for the Characterization of the Venting Process of Cylindrical Cells Under Thermal Runaway Conditions

2024-05-06
2024-01-2900
The increasing awareness on the harmful effects on the environment of traditional Internal Combustion Engines (ICE) is driving the industry toward cleaner powertrain technologies such as battery-driven Electric Vehicles. Nonetheless, the high energy density of Li-Ion batteries can cause strong exothermic reactions under certain conditions that can lead to catastrophic results, called Thermal Runaway (TR). Hence, a strong effort is being placed on understanding this phenomena and increase battery safety. Specifically, the vented gases and their ignition can cause the propagation of this phenomenon to adjancent batteries in a pack. In this work, Computational Fluid Dynamics (CFD) are employed to predict this venting process in a LG18650 cylindrical battery. The ejection of the generated gases was considered to analyze its dispersion in the surrounding volume through a Reynolds-Averaged Navier-Stokes (RANS) approach.
Technical Paper

Nozzle Geometry Size Influence on Reactive Spray Development: From Spray B to Heavy Duty Applications

2017-03-28
2017-01-0846
In the present work a constant-pressure flow facility able to reach 15 MPa ambient pressure and 1000 K ambient temperature has been employed to carry out experimental studies of the combustion process at Diesel engine like conditions. The objective is to study the effect of orifice diameter on combustion parameters as lift-off length, ignition delay and flame penetration, assessing if the processing methodologies used for a reference nozzle are suitable in heavy duty applications. Accordingly, three orifice diameter were studied: a spray B nozzle, with a nominal diameter of 90 μm, and two heavy duty application nozzles (diameter of 194 μm and 228 μm respectively). Results showed that nozzle size has a substantial impact on the ignition event, affecting the premixed phase of the combustion and the ignition location. On the lift-off length, increasing the nozzle size affected the combustion morphology, thus the processing methodology had to be modified from the ECN standard methodology.
X