Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Wear Rates of Gears By the Radioactive Method

1955-01-01
550271
A METHOD is described in this paper by which the rates of gear wear under different conditions can be determined by the use of the radioactive tracer technique. With this method one can measure the minutest amount of wear at loads and speeds much below critical destructive conditions. This method makes possible the continuous determination of rates of gear wear at all loads and speeds in actual full-scale units. In this investigation, the radioactive tracer technique has been used to determine the rates of gear wear when using a straight mineral oil and when using an extreme-pressure gear lubricant.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Vibratory Loosening of Bolts

1966-02-01
660432
In this paper, the effects of fluctuating torque on loosening of a tightly seated bolt are investigated. Tests over a wide range of bolt stresses and loosening torques are reported and equipment developed for determination of such effects is described. It is shown that a definite functional relationship exists between the stress on a typical bolt, the oscillatory loosening torque that is applied, and the number of cycles before the bolt becomes loose. The effects of these relationships follow a clearly defined law, although they are, of course, influenced by a number of additional variables.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Research Report

Unsettled Legal Issues Facing Automated Vehicles

2020-02-28
EPR2020005
This SAE EDGE Research Report explores the many legal issues raised by the advent of automated vehicles. While promised to bring major changes to our lives, there are significant legal challenges that have to be overcome before they can see widespread use. A century’s worth of law and regulation were written with only human drivers in mind, meaning they have to be amended before machines can take the wheel. Everything from key federal safety regulations down to local parking laws will have to shift in the face of AVs. This report undertakes an examination of the AV laws of Nevada, California, Michigan, and Arizona, along with two failed federal AV bills, to better understand how lawmakers have approached the technology. States have traditionally regulated a great deal of what happens on the road, but does that still make sense in a world with AVs? Would the nascent AV industry be able to survive in a world with fifty potential sets of rules?
Technical Paper

Understanding and Modeling NOx Emissions from Air Conditioned Automobiles

2000-03-06
2000-01-0858
The emission of excessive quantities of NOx when the automobile air conditioner is turned on has received a fair amount of attention in recent years. Since NOx is a smog precursor, it is important to understand the reasons for this jump in emissions especially on hot sunny days when air conditioner usage is at a maximum. A simple thermodynamic model is used to demonstrate how the torque from a typical air conditioner compressor is mainly related to the ambient temperature. The compressor's on-off cycling patterns are also characterized. Since the compressor significantly loads the engine, it affects fuel economy and emissions. The key independent variable that we employ to represent engine load is fuel rate. The correlations between engine-out NOx emissions and fuel rate are shown for a number of light duty vehicles and trucks. From these, a physical model for engine-out NOx emissions (with and without air conditioning) is presented.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Journal Article

Uncertainty Propagation in Multi-Disciplinary Design Optimization of Undersea Vehicles

2008-04-14
2008-01-0218
In this paper the development of statistical metamodels and statistical fast running models is presented first. They are utilized for propagating uncertainties in a multi-discipline design optimization process. Two main types of uncertainty can be considered in this manner: uncertainty due to variability in design variables or in random parameters; uncertainty due to the utilization of metamodels instead of the actual simulation models during the optimization process. The value of the new developments and their engagement in multi-discipline design optimization is demonstrated through a case study. An underwater vehicle is designed under four different disciplines, namely, noise radiation, self-noise due to TBL excitation, dynamic response due to propulsion impact loads, and response to an underwater detonation.
Technical Paper

Traumatopsy: A Unique Crash Reconstruction Method for Determining Injury Patterns in Fatal Motor Vehicle Crashes

2008-04-14
2008-01-0519
BACKGROUND: Detailed fatal injury data following fatal motor vehicle crashes (MVC) are necessary to improve occupant safety and promote injury prevention. Autopsy remains the principle source of detailed fatal injury data. However, procedure rates are declining due to a range of technical, ethical and religious concerns. Postmortem computed tomography (PMCT) is a potential alternative or adjunct to autopsy which is increasingly used by forensic researchers. However, there are only limited data regarding the utility of PMCT for analysis of fatal MVC injuries. METHODS: We performed whole body PMCT, autopsy and complete crash reconstruction on 3 subjects fatally injured in MVC in a single county in Michigan. All injuries detected by either PMCT or autopsy were coded using the Abbreviated Injury Scale (AIS). Severe injuries, defined as AIS 3 or higher (AIS 3+), were tallied for each forensic procedure to allow a comparison of relative diagnostic performance.
Technical Paper

Transmission Shift Strategies for Electrically Supercharged Engines

2019-04-02
2019-01-0308
This work investigates the potential improvements in vehicle fuel economy possible by optimizing gear shift strategies to leverage a novel boosting device, an electrically assisted variable speed supercharger (EAVS), also referred to as a power split supercharger (PSS). Realistic gear shift strategies, resembling those commercially available, have been implemented to control upshift and downshift points based on torque request and engine speed. Using a baseline strategy from a turbocharged application of a MY2015 Ford Escape, a vehicle gas mileage of 34.4 mpg was achieved for the FTP75 drive cycle before considering the best efficiency regions of the supercharged engine.
Technical Paper

Transient Heating of Air Bag Fabrics: Experiment and Modeling

1998-02-23
980865
A model is presented in which distinction is made between the contributions of the different mechanisms of heat transfer to an air bag fabric during deployment. An experimental setup, designed for simulation and recording of the thermal response of permeable and coated (impermeable) air bag fabrics, is described. Comparisons between the experimental results and numerical predictions show fair agreement. The preliminary results show that the model provides a framework in which the interplay between the three convective heat transfer coefficients (two surface and one volumetric) that affect the fabric temperature (and the heat loss from the upstream bag gas) can be examined. Currently the magnitude of these surface convective heat fluxes are being examined experimentally.
Technical Paper

Towards Video Sharing in Vehicle-to-Vehicle and Vehicle-to-Infrastructure for Road Safety

2017-03-28
2017-01-0076
Current implementations of vision-based Advanced Driver Assistance Systems (ADAS) are largely dependent on real-time vehicle camera data along with other sensory data available on-board such as radar, ultrasonic, and GPS data. This data, when accurately reported and processed, helps the vehicle avoid collisions using established ADAS applications such as Forward Collision Avoidance (FCA), Autonomous Cruise Control (ACC), Pedestrian Detection, etc. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) over Dedicated Short Range Communication (DSRC) provides basic sensory data from other vehicles or roadside infrastructure including position information of surrounding traffic. Exchanging rich data such as vision data between multiple vehicles, and between vehicles and infrastructure provides a unique opportunity to advance driver assistance applications and Intelligent Transportation Systems (ITS).
Technical Paper

Towards Shape Optimization of Radiator Cooling Tanks

2002-03-04
2002-01-0952
With increased demand for improvements in the efficiency and operation of all automotive engine components, including those in the engine cooling system, there is a need to develop a set of virtual tools that can aid in both the evaluation and design of automotive components. In the case of automotive radiators, improvements are needed in the overall pressure drop as well as the coolant flow homogeneity across all radiator tubes. The latter criterion is particularly important in the reduction of premature fouling and failure of heat exchangers. Rather than relying on ad hoc geometry changes with the goal of improving the performance of radiators, the coupling of CFD flow simulations with numerical shape optimization methods could assist in the design and testing of automotive heating and cooling components.
Technical Paper

Towards Improved Automotive HVAC Control through Internet Connectivity

2015-04-14
2015-01-0370
Traditional Heat Ventilation and Air Conditioning (HVAC) control systems are reactive by design and largely dependent on the on-board sensory data available on a Controller Area Network (CAN) bus. The increasingly common Internet connectivity offered in today's vehicles, through infotainment and telematic systems, makes data available that may be used to improve current HVAC systems. This includes real-time outside relative humidity, ambient temperature, precipitation (i.e., rain, snow, etc.), and weather forecasts. This data, combined with position and route information of the vehicle, may be used to provide a more comfortable experience to vehicle occupants in addition to improving driver visibility through more intelligent humidity, and defrost control. While the possibility of improving HVAC control utilizing internet connectivity seems obvious, it is still currently unclear as to what extent.
Technical Paper

Torso Kinematics in Seated Reaches

2004-06-15
2004-01-2176
Simulations of humans performing seated reaches require accurate descriptions of the movements of the body segments that make up the torso. Data to generate such simulations were obtained in a laboratory study using industrial, auto, and truck seats. Twelve men and women reached to push-button targets located throughout their right-hand reach envelopes as their movements were recorded using an electromagnetic tracking system. The data illustrate complex patterns of motion that depend on target location and shoulder range of motion. Pelvis motion contributes substantially to seated reach capability. On padded seats, the effective center of rotation of the pelvis is often within the seat cushion below the pelvis rather than at the hips. Lumbar spine motions differ markedly depending on the location of the target. A categorization of reach targets into four zones differentiated by torso kinematics is proposed.
Technical Paper

Tooth Mesh Modeling of Spur Gears with Tooth Root Crack Damage Using a Finite Element/Contact Mechanics Approach

2021-04-06
2021-01-0699
Motivated by accurate representations in gear dynamics models, this work analyzes the force-deflection relationship between spur gear pairs when the gear teeth have tooth root cracks. A finite element/contact mechanics approach is used to accurately capture the elastic deformations of the gear mesh incorporating kinematic gear motion; elastic deflections of the teeth, root, and blank; and elastic contact between the mating gear teeth. Tooth root crack damage of fixed sizes are analyzed, and the resulting static transmission error and mesh stiffness are calculated. These FE/CM model outputs are relatively insensitive to important gear crack geometry, including the initial crack location, the path it follows, and its final location. Crack-induced changes in static transmission error and mesh stiffness are driven by the remaining amount of the tooth that is healthy. Calculations of average-slope and local-slope mesh stiffness are included because both are used in gear dynamic models.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
X