Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wavelet-Based Visualization of Impulsive and Transient Sounds in Stationary Background Noise

2001-04-30
2001-01-1475
Scalograms based on shift-invariant orthonormal wavelet transforms can be used to analyze impulsive and transient sounds in the presence of more stationary sound backgrounds, such as wind noise or drivetrain noise. The visual threshold of detection for impulsive features on the scalogram (signal energy content vs. time and frequency,) is shown to be similar to the audible threshold of detection of the human auditory system for the corresponding impulsive sounds. Two examples of impulsive sounds in a realistic automotive sound background are presented: automotive interior rattle in a vehicle passenger compartment, and spark knock recorded in an engine compartment.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Vision Based Object Distance Estimation

2017-03-28
2017-01-0109
This work describes a single camera based object distance estimation system. As technology on vehicles is constantly advancing on the road to autonomy, it is critical to know the locations of objects in 3D space for safe behavior of the vehicle. Though significant progress has been made on object detection in 2D sensor space from a single camera, this work additionally estimates the distance to said object without requiring stereo vision or absolute knowledge of vehicle motion. Specifically, our proposed system is comprised of three modules: vision based ego-motion estimation, object-detection, and distance estimation. In particular, we compensate for the vehicle ego-motion by using pin-hole camera model to increase the accuracy of the object distance estimation.
Technical Paper

Virtual Exhaust Gas Temperature Measurement

2017-03-28
2017-01-1065
Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Journal Article

Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop

2018-04-03
2018-01-0410
New 12 V/48 V power net architectures are potential solutions to close the gap between customer needs and legislative requirements. In order to exploit their potential, an increased effort is needed for functional implementation and hardware integration. Shifting of development tasks to earlier phases (frontloading) is a promising solution to streamline the development process and to increase the maturity level at early stages. This study shows the potential of the frontloading of development tasks by implementing a virtual 48 V mild hybridization in an engine-in-the-loop (EiL) setup. Advanced simulation technics like functional mock-up interface- (FMI) based co-simulation are utilized for the seamless integration of the real-time (RT) simulation models and allow a modular simulation framework as well as a decrease in development time.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Technical Paper

Vehicle NVH Evaluations and NVH Target Cascading Considerations for Hybrid Electric Vehicles

2015-06-15
2015-01-2362
The increasing trend toward electric and hybrid-electric vehicles (HEVs) has created unique challenges for NVH development and refinement. Traditionally, characterization of in-vehicle powertrain noise and vibration has been assessed through standard operating conditions such as fixed gear engine speed sweeps at varied loads. Given the multiple modes of operation which typically exist for HEVs, characterization and source-path analysis of these vehicles can be more complicated than conventional vehicles. In-vehicle NVH assessment of an HEV powertrain requires testing under multiple operating conditions for identification and characterization of the various issues which may be experienced by the driver. Generally, it is necessary to assess issues related to IC engine operation and electric motor operation (running simultaneously with and independent of the IC engine), under both motoring and regeneration conditions.
Technical Paper

Variable Cam Timing (VCT) Knock Root Cause Analysis and Failure Mode Prevention

2019-01-18
2019-01-5003
Knock in the Camshaft Torque Actuated (CTA) in the Variable Cam Timing (VCT) engine can be a NVH issue and a source of customer complaint. The knock noise usually occurs during hot idle when the VCT phaser is in the locked position and the locking pin is engaged. During a V8 engine development at Ford, the VCT knock noise was observed during hot idle run. In this paper investigation leading to the identification of the root cause through both test and the CAE simulation is presented. The key knock contributors involving torque and its rate of change in addition to the backlash level are discussed. A CAE metric to assess knock occurrence potential for this NVH failure mode is presented. Finally a new design feature in terms of locking pinhole positioning to mitigate or eliminate the knock is discussed.
Technical Paper

Valvetrain Ticking Noise Analysis

2017-03-28
2017-01-1057
Valvetrain ticking noise is one of the key failure modes in noise vibration harshness (NVH) evaluation at idle. It affects customer satisfaction inversely. In this paper, the root cause of the valvetrain ticking noise and key parameters that impact ticking noise will be presented. A physics based math model has been developed and integrated into a parameterized multi-body dynamic model. The analytical prediction has been correlated with testing data. Valvetrain ticking noise control is discussed.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

2007-05-15
2007-01-2319
Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

Using Camless Valvetrain for Air Hybrid Optimization

2003-03-03
2003-01-0038
The air-hybrid engine absorbs the vehicle kinetic energy during braking, puts it into storage in the form of compressed air, and reuses it to assist in subsequent vehicle acceleration. In contrast to electric hybrid, the air hybrid does not require a second propulsion system. This approach provides a significant improvement in fuel economy without the electric hybrid complexity. The paper explores the fuel economy potential of an air hybrid engine by presenting the modeling results of a 2.5L V6 spark-ignition engine equipped with an electrohydraulic camless valvetrain and used in a 1531 kg passenger car. It describes the engine modifications, thermodynamics of various operating modes and vehicle driving cycle simulation. The air hybrid modeling projected a 64% and 12% of fuel economy improvement over the baseline vehicle in city and highway driving respectively.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Use of Raman Spectroscopy to Identify Automotive Polymers in Recycling Operations

2000-03-06
2000-01-0739
To support its recycling efforts, Ford Motor Company is using a Raman based instrument, the RP-1, co-developed with SpectraCode Inc. to identify unknown polymeric parts. Our recycling initiative involves detailed dismantling of our vehicles into individual parts, calculating the percentage recyclability and making recommendations for the future use of recycled polymers. While Ford has voluntarily adopted the SAE J1344 marking protocol for identifying part material composition, a large number of unmarked parts still exist and require identification. This identification is being done with the help of RP-1. To facilitate this identification, we have generated an accurate reference library of Raman spectra for comparison to those of unknown materials. This paper will describe the techniques that were used to develop and refine the RP-1 reference library to identify automotive polymers, especially black/dark plastics.
Technical Paper

Up-Front Prediction of the Effects of Cylinder Head Design on Combustion Rates in SI Engines

1998-02-23
981049
Accurate prediction of engine combustion characteristics, especially burn rates, can eliminate a number of hardware iterations, thus resulting in a significant reduction in design and developmental time and cost. An analytical methodology has been developed which allows the determination of part-load MBT spark timing to within 2 crank-angle degrees. The design methodology employs the in-house-developed steady-state quasi-dimensional engine simulation model (GESIM), coupled with full-field measurement of the in-cylinder fluid motion at bottom dead center (BDC) in the computer-controlled water analog system (AquaDyne). The in-cylinder flow-field measurements are obtained using 3-D Particle Tracking Velocimetry (3-D PTV), also developed in-house. In this methodology, the in-cylinder flow measurement data are used to calibrate both the tumble and swirl models in GESIM.
X