Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Technical Paper

Wireless Power Transfer for Electric Vehicles

2011-04-12
2011-01-0354
As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.
Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

Wear Rates of Gears By the Radioactive Method

1955-01-01
550271
A METHOD is described in this paper by which the rates of gear wear under different conditions can be determined by the use of the radioactive tracer technique. With this method one can measure the minutest amount of wear at loads and speeds much below critical destructive conditions. This method makes possible the continuous determination of rates of gear wear at all loads and speeds in actual full-scale units. In this investigation, the radioactive tracer technique has been used to determine the rates of gear wear when using a straight mineral oil and when using an extreme-pressure gear lubricant.
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Journal Article

Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

2016-04-05
2016-01-0909
A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years 2017 (MY17) through 2025 (MY25) passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the required rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the model year 2005 (MY05) US light-duty vehicle fleet to the model year 2015 (MY15) fleet shows improved fuel economy (FE) of approximately 26% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of required vehicle rate-of-change.
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Technical Paper

Variability in Driving Conditions and its Impact on Energy Consumption of Urban Battery Electric and Hybrid Buses

2020-04-14
2020-01-0598
Growing environmental concerns and stringent vehicle emissions regulations has created an urge in the automotive industry to move towards electrified propulsion systems. Reducing and eliminating the emission from public transportation vehicles plays a major role in contributing towards lowering the emission level. Battery electric buses are regarded as a type of promising green mass transportation as they provide the advantage of less greenhouse gas emissions per passenger. However, the electric bus faces a problem of limited range and is not able to drive throughout the day without being recharged. This research studies a public bus transit system example which servicing the city of Ann Arbor in Michigan and investigates the impact of different electrification levels on the final CO2 reduction. Utilizing models of a conventional diesel, hybrid electric, and battery electric bus, the CO2 emission for each type of transportation bus is estimated.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Understanding and Modeling NOx Emissions from Air Conditioned Automobiles

2000-03-06
2000-01-0858
The emission of excessive quantities of NOx when the automobile air conditioner is turned on has received a fair amount of attention in recent years. Since NOx is a smog precursor, it is important to understand the reasons for this jump in emissions especially on hot sunny days when air conditioner usage is at a maximum. A simple thermodynamic model is used to demonstrate how the torque from a typical air conditioner compressor is mainly related to the ambient temperature. The compressor's on-off cycling patterns are also characterized. Since the compressor significantly loads the engine, it affects fuel economy and emissions. The key independent variable that we employ to represent engine load is fuel rate. The correlations between engine-out NOx emissions and fuel rate are shown for a number of light duty vehicles and trucks. From these, a physical model for engine-out NOx emissions (with and without air conditioning) is presented.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
Journal Article

Uncertainty Propagation in Multi-Disciplinary Design Optimization of Undersea Vehicles

2008-04-14
2008-01-0218
In this paper the development of statistical metamodels and statistical fast running models is presented first. They are utilized for propagating uncertainties in a multi-discipline design optimization process. Two main types of uncertainty can be considered in this manner: uncertainty due to variability in design variables or in random parameters; uncertainty due to the utilization of metamodels instead of the actual simulation models during the optimization process. The value of the new developments and their engagement in multi-discipline design optimization is demonstrated through a case study. An underwater vehicle is designed under four different disciplines, namely, noise radiation, self-noise due to TBL excitation, dynamic response due to propulsion impact loads, and response to an underwater detonation.
Technical Paper

ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation

2009-11-02
2009-01-2802
Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied.
X