Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

‘ElderTech’ - Enhancing the Independence of Elderly Through the Use of Technology

2000-03-06
2000-01-1368
Longevity is one of the great achievements of the twentieth century. This paper will explore ways that elderly people can employ technology to enhance their independence, loosely termed “ElderTech.” ElderTech is designed to establish a sustained, long-term investment in research and development (R&D) for technologies that can provide the largest growing population, Americans over the age of 65, with the tools to ensure active aging (maintaining independence, self-reliance, and an enhanced quality of life). It will also promote aging in place (in the home); and will address and ease Medicare's financial burden on the federal government. ElderTech is aimed to establish a technology framework that will ensure that the United States (U.S.) is ready to meet the needs of its older Americans.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Technical Paper

Variability in Center of Gravity Height Measurement

1992-02-01
920050
A round-robin center of gravity height measurement study was conducted to assess current practice in the measurement of the vertical position of the center of gravity (c.g.) of light truck-type vehicles. The study was performed by UMTRI for the Motor Vehicle Manufacturers Association. The laboratories participating in the study were those of Chrysler Corporation, Ford Motor Company, General Motors Corporation, and the National Highway Traffic Safety Administration. The primary objectives of this study were (i) to determine to what extent the differing experimental procedures used by the participating laboratories at the time of the study result in significant differences in the measured vertical position of the center of mass of light truck-type vehicles, and (ii) to gain insight into the physical causes of such differences.
Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Technical Paper

Upper-Extremity Injuries From Steering Wheel Airbag Deployments

1997-02-24
970493
In a review of 540 crashes in which the steering-wheel airbag deployed, 38% of the drivers sustained some level of upper extremity injury. The majority of these were AIS-1 injuries including abrasions, contusions and small lacerations. In 18 crashes the drivers sustained AIS-2 or-3 level upper extremity injuries, including fractures of the radius and/or ulna, or of the metacarpal bones, all related to airbag deployments. It was determined that six drivers sustained the fracture(s) directly from the deploying airbag or the airbag module cover. The remaining 12 drivers had fractures from the extremity being flung into interior vehicle structures, usually the instrument panel. Most drivers were taller than 170 cm and, of the 18 drivers, 10 were males.
Technical Paper

Upper Extremity Injuries Related to Air Bag Deployments

1994-03-01
940716
From our crash investigations of air bag equipped passenger cars, a subset of upper extremity injuries are presented that are related to air bag deployments. Minor hand, wrist or forearm injuries-contusions, abrasions, and sprains are not uncommonly reported. Infrequently, hand fractures have been sustained and, in isolated cases, fractures of the forearm bones or of the thumb and/or adjacent hand. The close proximity of the forearm or hand to the air bag module door is related to most of the fractures identified. Steering wheel air bag deployments can fling the hand-forearm into the instrument panel, rearview mirror or windshield as indicated by contact scuffs or tissue debris or the star burst (spider web) pattern of windshield breakage in front of the steering wheel.
Research Report

Unsettled Issues Facing Automated Vehicles and Insurance

2020-08-05
EPR2020015
This SAE EDGE™ Research Report explores how the deployment of automated vehicles (AVs) will affect the insurance industry and the principles of liability that underly the structure of insurance in the US. As we trade human drivers for suites of sensors and computers, who (or what) is responsible when there is a crash? The owner of the vehicle? The automaker that built it? The programmer that wrote the code? Insurers have over 100 years of experience and data covering human drivers, but with only a few years’ worth of information on AVs – how can they properly predict the true risks associated with their deployment? Without an understanding of the nature and risks of AVs, how can the government agencies that regulate the insurance industry provide proper oversight? Do the challenges AVs present require a total reworking of our insurance and liability systems, or can our current structures be adapted to fit them with minor modifications?
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Underride in Fatal Rear-End Truck Crashes

2000-12-04
2000-01-3521
For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
Technical Paper

UMTRI Experimental Techniques in Head Injury Research

1985-06-01
851244
This paper discusses techniques developed and used by the Biosciences Group at the University of Michigan Transportation Research Institute (UMTRI) for measuring three-dimensional head motion, skull bone strain, epidural pressure, and internal brain motion of repressurized cadavers and Rhesus monkeys during head impact. In the experimental design, a stationary test subject is struck by a guided moving impactor of 10 kg (monkeys) and 25 or 65 kg (cadavers). The impactor striking surface is fitted with padding to vary the contact force-time characteristics. The experimental technique uses a nine-accelerometer system rigidly affixed to the skull to measure head motion, transducers placed at specific points below the skull to record epidural pressure, repressurization of both the vascular and cerebrospinal systems, and high-speed cineradiography (at 1000 frames per second) of radiopaque targets.
Technical Paper

Traumatopsy: A Unique Crash Reconstruction Method for Determining Injury Patterns in Fatal Motor Vehicle Crashes

2008-04-14
2008-01-0519
BACKGROUND: Detailed fatal injury data following fatal motor vehicle crashes (MVC) are necessary to improve occupant safety and promote injury prevention. Autopsy remains the principle source of detailed fatal injury data. However, procedure rates are declining due to a range of technical, ethical and religious concerns. Postmortem computed tomography (PMCT) is a potential alternative or adjunct to autopsy which is increasingly used by forensic researchers. However, there are only limited data regarding the utility of PMCT for analysis of fatal MVC injuries. METHODS: We performed whole body PMCT, autopsy and complete crash reconstruction on 3 subjects fatally injured in MVC in a single county in Michigan. All injuries detected by either PMCT or autopsy were coded using the Abbreviated Injury Scale (AIS). Severe injuries, defined as AIS 3 or higher (AIS 3+), were tallied for each forensic procedure to allow a comparison of relative diagnostic performance.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

The Quantification of Liver Anatomical Changes and Assessment of Occupant Liver Injury Patterns

2013-11-11
2013-22-0011
Liver injuries can be significant in vehicle crashes. In this study, the liver anatomy was quantified in both adult and pediatric populations as a function of gender and age. Five anatomical liver measurements were determined using CT scans of 260 normal livers. These measurements include the area and volume, and the length, width, and girth of the liver (IRB HUM00041441). To characterize geometrical shape, an inscribed sphere and circumscribed ellipsoid were fitted on the measurements. In the pediatric population the liver area and volume continuously increased with age. When normalized by patient weight, volume measurements show a decrease in volume with age, suggesting that the liver occupies a smaller proportion of the body with age. In the adult population, liver measurements varied with gender. The superior and inferior locations of the liver were also recorded with respect to the spine. The lower portion was at the L3 in small children and at L2 as children approached puberty.
Technical Paper

The Mg-Al-Ca Alloy System for Structural Applications at Elevated Temperatures

2007-04-16
2007-01-1025
Solidification paths and phase stability have been investigated in the creep resistant Mg-Al-Ca based alloys for powertrain applications. The liquidus projection and isothermal sections of the Mg-Al-Ca ternary system were determined, including a ternary (Mg, Al)2Ca intermetallic compound. The solidification of the alloys in the α-Mg primary phase field involves L→α+(Mg, Al)2Ca eutectic reaction in a wide range of compositions and is terminated with invariant reactions that form Mg2Ca or Mg17Al12 phases. The (Mg, Al)2Ca is a high temperature phase and decomposes into Mg2Ca and Al2Ca phases between 773 and 673 K, but the transformation is kinetically quite slow at temperatures below 473 K. Based on this new knowledge, alloy modifications through quaternary elemental additions to improve the solid-solution strength and aging treatments to reinforce the α-Mg phase with precipitates have been demonstrated.
Journal Article

The Influence of Road Surface Properties on Vehicle Suspension Parameters Optimized for Ride - Design Trends for Global Markets

2012-04-16
2012-01-0521
Suspension design is influenced by many factors, especially by vehicle dynamics performance in ride, handling and durability. In the global automotive industry it is common to “customize” or tune suspension parameters so that a vehicle is more acceptable to a different customer base and in a different driving environment. This paper seeks to objectively quantify certain aspects of tuning via ride optimization, taking account of market differences in road surface spectral properties and loading conditions. A computationally efficient methodology for suspension optimization is developed using stochastic techniques. A small (B-class) vehicle is chosen for the study and the following main suspension parameters are selected for optimization - spring stiffness, damping rate and vertical tire stiffness. The road is characterized as a stationary random process, using scaling and shaping filters representative of comparable roads in India and the USA.
X