Refine Your Search

Topic

Author

Search Results

Technical Paper

Vauxhall 14-40 - an 80th Year Review of its Technology

2002-03-04
2002-01-0452
The Vauxhall 14-40 was introduced in 1922 and is a good example of contemporary best practice. In its first 20 years Vauxhall had established a strong reputation for sporting performance, and the 14-40 was their first vehicle aimed at the middle classes. The 14-40 has extensive use of aluminum alloy castings, a unitary engine clutch and gear box with a torque tube coupling to the back axle, half elliptic front springs with a beam axle and cantilevered rear leaf springs. The engine was heavily influenced by Ricardo, so as to have low friction levels and a good combustion performance. The engine design will be reviewed in the context of the fuel available in the 1920s. This paper reviews the vehicle technology in the context of its contemporaries, and makes use of contemporary engine performance data for tuning a simple engine model, the results of which are to be used in a vehicle simulation.
Journal Article

Using Virtual Product Development with Design of Experiments to Design Battery Packs for Electrified Powertrain

2021-04-06
2021-01-0764
Stringent automotive legislation is driving requirements for increasingly complex battery pack solutions. The key challenges for battery pack development drive cost and performance optimisation, growth in architecture solutions, monitoring and safety through lifetime, and faster-to-market expectations. The battery Virtual Product Development (VPD) toolchain addresses these challenges and provides a solution to reduce the battery pack development time, cost and risk. The battery VPD toolchain is built upon scalable, validated sub-models of the battery pack that capture the interactions between the various domains; mechanical, electrical, thermal and hydraulic. The model fidelity can be selected at each stage of the design process allowing the right amount of detail, and available data, to be incorporated. The toolchain is coupled with vehicle simulation tools to rapidly assess performance of the complete electrified powertrain.
Technical Paper

Using Design of Experiments to Size and Calibrate the Powertrain of Range-Extended Electric Vehicle

2020-04-14
2020-01-0849
A Range-Extended Electric Vehicle (REEV) usually has an auxiliary power source that can provide additional range when the main Rechargeable Energy Storage System (RESS) runs out. The range extender can be a fuel cell, a gas turbine, or an Internal Combustion Engine (ICE) bolted to a generator. Sizing the powertrain for a REEV is primarily to investigate the relationship between the capacity of the main RESS and the power rating of the range extender. Worldwide harmonized Light vehicles Test Procedures (WLTP) introduced a Utility Factor (UF) which is a curve used to calculate the weighted test results for the Off-Vehicle Charging-Hybrid Electric Vehicle (OVC-HEV) from the measured Charge Depleting (CD) mode range result, and the Charge Sustaining (CS) mode Fuel Consumption (FC). Therefore, the RESS capacity, the range extender power rating, the control strategy, and the UF are the key factors affecting the weighted FC of a REEV on the test cycle.
Technical Paper

Two-Way Flow Coupling in Ice Crystal Icing Simulation

2019-06-10
2019-01-1966
Numerous turbofan power-loss events have occurred in high altitude locations in the presence of ice crystals. It is theorized that ice crystals enter the engine core, partially melt in the compressor and then accrete onto stator blade surfaces. This may lead to engine rollback, or shed induced blade damage, surge and/or flameout. The first generation of ice crystal icing predictive models use a single flow field where there is no accretion to calculate particle trajectories and accretion growth rates. Recent work completed at the University of Oxford has created an algorithm to automatically detect the edge of accretion from experimental video data. Using these accretion profiles, numerical simulations were carried out at discrete points in time using a manual meshing process.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Tribological Behavior of Low Viscosity Lubricants in the Piston to Bore Zone of a Modern Spark Ignition Engine

2014-10-13
2014-01-2859
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
Technical Paper

Thermal Analysis of Steel and Aluminium Pistons for an HSDI Diesel Engine

2019-04-02
2019-01-0546
Chromium-molybdenum alloy steel pistons, which have been used in commercial vehicle applications for some time, have more recently been proposed as a means of improving thermal efficiency in light-duty applications. This work reports a comparison of the effects of geometrically similar aluminium and steel pistons on the combustion characteristics and energy flows on a single cylinder high-speed direct injection diesel research engine tested at two speed / load conditions (1500 rpm / 6.9 bar nIMEP and 2000 rpm/25.8 bar nIMEP) both with and without EGR. The results indicate that changing to an alloy steel piston can provide a significant benefit in brake thermal efficiency at part-load and a reduced (but non-negligible) benefit at the high-load condition and also a reduction in fuel consumption. These benefits were attributed primarily to a reduction in friction losses.
Technical Paper

The Volumetric Efficiency of Direct and Port Injection Gasoline Engines with Different Fuels

2002-03-04
2002-01-0839
A study has been undertaken with a single-cylinder engine, based on the Mitsubishi GDi combustion system, that has the option of either port injection or direct injection. Tests have been undertaken with pure fuel components (methane, iso-octane, toluene and methanol), and a representative gasoline that has also been tested with the addition of 10% methanol and 10% ethanol. The volumetric efficiency depends both on the fuel and its time and place of injection. For stoichiometric operation with unleaded gasoline, changing from port injection to direct injection led to a 9% increase in volumetric efficiency, which was improved by a further 3% when 10% methanol was blended with the gasoline. The improvements in volumetric efficiency will be used to quantify the extent of charge cooling by fuel evaporation, and these will be compared with predictions assuming the maximum possible level of fuel evaporation.
Technical Paper

The Influence of Ethanol Blends on Particulate Matter Emissions from Gasoline Direct Injection Engines

2010-04-12
2010-01-0793
Particulate Matter (PM) legislation for gasoline engines and the introduction of gasoline/ethanol blends, make it important to know the effect of fuel composition on PM emissions. Tests have been conducted with fuels of known composition in both a single-cylinder engine and V8 engine with a three-way catalyst. The V8 engine used an unleaded gasoline (PURA) with known composition and distillation characteristics as a base fuel and with 10% by volume ethanol. The single-cylinder engine used a 65% iso-octane - 35% toluene mixture as its base fuel. The engines had essentially the same combustion system, with a centrally mounted 6-hole spray-guided direct injection system. Particle size distributions were recorded and these have also been converted to mass distributions. Filter samples were taken for thermo-gravimetric analysis (TGA) to give composition information. Both engines were operated at 1500 rpm under part load.
Technical Paper

The Effects of Hot Air Dilution and an Evaporation Tube (ET) on the Particulate Matter Emissions from a Spray Guided Direct Injection Spark Ignition Engine

2012-04-16
2012-01-0436
The emission of nanoparticles from combustion engines has been shown to have a poorly understood impact on the atmospheric environment and human health, and legislation tends to err on the side of caution. Researchers have shown that Gasoline Direct Injection (GDI) engines tend to emit large amounts of small-sized particles compared to diesel engines fitted with Diesel Particulate Filters (DPFs). As a result, the particulate number emission level of GDI engines means that they could face some challenges in meeting the likely EU6 emissions requirement. This paper presents size-resolved particle number emissions measurements from a spray-guided GDI engine and evaluates the performance of an Evaporation Tube (ET). The performance of an Evaporation Tube and hot air dilution system with a 7:1 dilution ratio has been studied, as the EU legislation uses these to exclude volatile particles.
Technical Paper

The Effect of an Active Thermal Coating on Efficiency and Emissions from a High Speed Direct Injection Diesel Engine

2020-04-14
2020-01-0807
This study looked into the application of active thermal coatings on the surfaces of the combustion chamber as a method of improving the thermal efficiency of internal combustion engines. The active thermal coating was applied to a production aluminium piston and its performance was compared against a reference aluminium piston on a single-cylinder diesel engine. The two pistons were tested over a wide range of speed/load conditions and the effects of EGR and combustion phasing on engine performance and tailpipe emissions were also investigated. A detailed energy balance approach was employed to study the thermal behaviour of the active thermal coating. In general, improvements in indicated specific fuel consumption were not statistically significant for the coated piston over the whole test matrix. Mean exhaust temperature showed a marginal increase with the coated piston of up to 6 °C.
Technical Paper

The Effect of Non-Ideal Vapour-Liquid Equilibrium and Non-Ideal Liquid Diffusion on Multi-Component Droplet Evaporation for Gasoline Direct Injection Engines

2015-04-14
2015-01-0924
A model for the evaporation of a multi-component fuel droplet is presented that takes account of temperature dependent fuel and vapour properties, evolving droplet internal temperature distribution and composition, and enhancement to heat and mass transfer due to droplet motion. The effect on the internal droplet mixing of non-ideal fluid diffusion is accounted for. Activity coefficients for vapour-liquid equilibrium and diffusion coefficients are determined using the UNIFAC method. Both well-mixed droplet evaporation (assuming infinite liquid mass diffusivity) and liquid diffusion-controlled droplet evaporation (iteratively solving the multi-component diffusion equation) have been considered. Well-mixed droplet evaporation may be applicable with slow evaporation, for example early gasoline direct injection; diffusion-controlled droplet evaporation must be considered when faster evaporation is encountered, for example when injection is later, or when the fuel mixture is non-ideal.
Technical Paper

The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines

2016-04-05
2016-01-0700
Knocking combustion places a major limit on the performance and efficiency of spark ignition engines. Spontaneous ignition of the unburned air-fuel mixture ahead of the flame front leads to a rapid release of energy, which produces pressure waves that cause the engine structure to vibrate at its natural frequencies and produce an audible ‘pinging’ sound. In extreme cases of knock, increased temperatures and pressures in the cylinder can cause severe engine damage. Damage is thought to be caused by thermal strain effects that are directly related to the heat flux. Since it will be the maximum values that are potentially the most damaging, then the heat flux needs to be measured on a cycle-by-cycle basis. Previous work has correlated heat flux with the pressure fluctuations on an average basis, but the work here shows a correlation on a cycle-by-cycle basis. The in-cylinder pressure and surface temperature were measured using a pressure transducer and eroding-type thermocouple.
Technical Paper

The Drive for Minimum Fuel Consumption of Passenger Car Diesels: An Analytical Study to Evaluate Key Architectural Choices

2015-09-06
2015-24-2519
Fuel consumption, and the physical behaviours behind it, have never been of greater interest to the automotive engineering community. The enormous design, development and infrastructure investment involved with a new engine family which will be in production for many years demands significant review of the base engine fundamental architecture. Future CO2 challenges are pushing car manufacturers to consider alternative engine configurations. As a result, a wide range of diesel engine architectures are available in production, particularly in the 1.4 to 1.6 L passenger car market, including variations in cylinder size, number of valves per cylinder, and bore:stroke (B/S) ratio. In addition, the 3 cylinder engine has entered the market in growing numbers, despite its historic NVH concerns. Ricardo has performed a generic architecture study for a midsize displacement engine in order to assess the pros and cons of each engine configuration.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

Simulation Based Hybrid Electric Vehicle Components Sizing and Fuel Economy Prediction by Using Design of Experiments and Stochastic Process Model

2019-04-02
2019-01-0357
The aim of this study is to evaluate the Fuel Economy (FE) over the driving cycle for a 48 Volt P2 technology vehicle with different component ratings (battery and electric machine) in the hybrid powertrain, using simulation and Design of Experiments (DoE) tools. The P2 architecture was selected for this study based on an initial assessment of a wide number of possibilities, using the Ricardo “Architecture Independent Modelling (AIM)” toolset. This allows rapid evaluation of different powertrain options independently of a defined hybrid control strategy. For the vehicle with P2 architecture, a DoE test matrix of battery capacity and electric machine power rating was created. The test matrix was then imported into the simulation environment to perform the driving cycle FE simulations. Then, a 48 V P2 Hybrid Electric Vehicle (HEV) FE emulator model was created and interrogated using model visualisation and optimisation methods.
Journal Article

Rolling Elements Assessment on Crankshaft Main Bearings of Light Duty Diesel Engine

2014-04-01
2014-01-1637
Rolling element bearings are known to give reduced friction losses when compared to the hydrodynamic bearings typically used to support the crankshaft in multi-cylinder engines. This paper describes the design, manufacturing and testing of a modified 4 cylinder light duty Diesel production engine with rolling element bearings applied at the crankshaft main bearings in view of CO2 emission reduction. Selection of the most suitable type of roller bearings for this specific application was made. Technology development through multi-body dynamic simulation and component testing was done to assess the effect on rolling elements performance due to the key challenges inherent to such bearing solution: high instantaneous combustion load, lubrication with low viscosity and contaminated oil, and the cracking process to split the bearing outer raceway.
Technical Paper

Reducing Diesel Emissions Dispersion by Coordinated Combustion Feedback Control

2006-04-03
2006-01-0186
Future demands for very low emissions from diesel engines, without compromising fuel economy or driveability, require Engine Management Systems (EMS) capable of compensating for emissions dispersion caused by production tolerances and component ageing. The Advanced Diesel Engine Control (ADEC) Project, a collaboration between Ricardo and General Motors, is aimed at reducing engine-out emissions dispersion and enabling alternative combustion modes, such as Highly Premixed Cool Combustion (HPCC), in real-world scenarios. This is being achieved by high-level co-ordination of fuel, air and EGR in order to meet the conflicting performance requirements of current and future diesel engines. A sensor feasibility study was undertaken which included a number of new sensing technologies appropriate for future mass production. Two sensor types, namely cylinder pressure and accelerometer sensors, were then selected to demonstrate varying degrees of benefits versus sensor technology cost.
Technical Paper

Prediction of NO Emissions from Stratified Charge Spark-Ignition Engines

2002-03-04
2002-01-1139
A thermodynamic model of spark ignition engine combustion, with multiple burned gas zones, has been extended to permit the different burned gas zones to have different mixture strengths. The NO formation is predicted in each burned gas zone using the extended Zeldovich mechanism. The model has been used to study stratified charge spark ignition engine combustion, in order to investigate the influence of overall equivalence ratio and degree of stratification on the NO emissions and the engine brake specific fuel consumption. For fixed throttle operation, it is concluded that the best trade-off is with an overall weak mixture that is close to homogeneous. For maximum power output using a slightly rich of stoichiometric mixture, then the mixture should also be close to homogeneous.
X