Refine Your Search

Topic

Search Results

Journal Article

Track-Based Aerodynamic Testing of a Two-Truck Platoon

2021-04-06
2021-01-0941
Fuel savings from truck platooning are generally attributed to an aerodynamic drag-reduction phenomena associated with close-proximity driving. The current paper is the third in a series of papers documenting track testing of a two-truck platoon with a Cooperative Adaptive Cruise Control (CACC) system where fuel savings and aerodynamics measurements were performed simultaneously. Constant-speed road-load measurements from instrumented driveshafts and on-board wind anemometry were combined with vehicle measurements to calculate the aerodynamic drag-area of the vehicles. The drag-area results are presented for each vehicle in the two-truck platoon, and the corresponding drag-area reductions are shown for a variety of conditions: gap separation distances (9 m to 87 m), lateral offsets (up to 1.3 m), dry-van and flatbed trailers, and in the presence of surrounding traffic.
Technical Paper

The Limits of Drag Behavior for Two Bluff Bodies in Tandem

2004-03-08
2004-01-1145
We demonstrate the interaction of two truck shapes in tandem. Both trucks experience a decreased drag coefficient from the interaction. The degree of drag saving depends strongly upon the drag coefficients of the model trucks in isolation, and upon how the two trucks are arranged. For the two simplest shapes-parallelepipeds with or without partial leading-edge rounding-the total drag saving can range from 10 percent to 40% at a spacing of 2√A (approximately 18 feet at full scale) depending upon whether the lead or the trail parallelepiped has rounding. These two shapes-blunt and rounded-have drag coefficients in isolation of 0.94 and 0.51 respectively, and probably bracket the savings to be obtained for all real truck geometries. Our realistic model trucks (with wheels and a gap between tractor and trailer serving to distribute the source of drag along the length of the truck) have drag coefficients in the range CD = 0.5-0.7, and the total drag saving is a more modest 15-20% at 2√A.
Technical Paper

The Influence of Close-following Upon the Cooling Module Air Flow

1998-08-11
981941
The purpose of this report is to experimentally determine the air flow through the cooling module (air-conditioning condenser plus engine radiator) of a Ford Windstar minivan when the van is operated at a fraction of a vehicle length behind a lead van. Pressures and temperatures are measured across the cooling module while the vans are in operation, and a standard calibration relates the pressure drop to the flow velocity through the cooling module. The Windstars are connected in tandem and driven on a test track at spacings of 0.22, 0.28, 0.38, 0.62, 0.88, and 1.0, expressed as fractions of the Wind-star length. For the purposes of the test, an override switch is installed to allow the close-following van to be operated either with both cooling fans remaining on or with both fans disabled. Air flow is expressed either as a volume flow, in cubic meters per second, or as the fraction of the flow for a van operating in isolation at the same forward speed.
Technical Paper

Reliability and Life Study of Hydraulic Solenoid Valve - Part 2 - Experimental Study

2009-04-20
2009-01-0413
The current work studies the reliability of a solenoid valve (SV) used in automobile transmissions through a joint theoretical and experimental approach. The goal of this work is to use accelerated tests to characterize SV failure and correlate the results to new comprehensive finite element models (Part 1). A custom test apparatus has been designed and built to simultaneously monitor and actuate up to four SVs. The test apparatus is capable of applying a controlled duty cycle, current and actuation frequency. The SVs are also placed in a thermal chamber so that the ambient temperature can be controlled precisely. The apparatus measures in real-time the temperature, current, and voltage of each SV. A series of tests have been conducted to produce repeated failures of the SV. The failure of the SV appears to be caused by overheating and failure of the insulation used in the solenoid coil.
Technical Paper

Quantifying the Energy Impact of Autonomous Platooning-Imposed Longitudinal Dynamics

2023-04-11
2023-01-0896
Platooning has produced significant energy savings for vehicles in a controlled environment. However, the impact of real-world disturbances, such as grade and interactions with passenger vehicles, has not been sufficiently characterized. Follower vehicles in a platoon operate with both different aerodynamic drag and different velocity traces than while driving alone. While aerodynamic drag reduction usually dominates the change in energy consumption for platooning vehicles, the dynamics imposed on the follow vehicle by the lead vehicle and exogenous disturbances impacting the platoon can negate aerodynamic energy savings. In this paper, a methodology is proposed to link the change in longitudinal platooning dynamics with the energy consumption of a platoon follower in real time. This is accomplished by subtracting a predicted acceleration from measured longitudinal acceleration.
Technical Paper

Quantifying Platoon Fuel Savings: 1999 Field Experiments

2001-03-05
2001-01-1268
The results reported are from tests on July 6-8, 1999, on a limited-access 12km section of I -15 in San Diego. The tests involved 2, 3 and 4-car platoons operated and maintained by PATH personnel under the auspices of CALTRANS and utilized Buick LeSabre sedans under fully automatic longitudinal and lateral control. Multiple sensor data was acquired, including the fuel injector pulse width. We demonstrate that the fuel injector pulse width, in combination with engine RPM and forward speed, can be used to determine accurate estimates of instantaneous fuel consumption. The repeatability for total fuel consumed over a 2.4 km portion of the test path is ±1% based upon multiple single car runs over the three day period, with the major portion of the uncertainty arising from changing wind conditions. Fuel savings for individual vehicles vary from 0-10% depending upon number of vehicles, vehicle spacing, and vehicle position within the platoon.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
Technical Paper

Prediction and Optimization of radiated sound power and radiation efficiency of vibrating structures using FEM

2000-03-06
2000-01-0726
Structure borne sound is one of the most important reasons of noise pollution in the automobiles and aircraft's. Noise is mostly generated by the vibrating panels excited by either a mechanical or an acoustical excitation. Examples of the typical vibrating structures in automobiles are engine cylinder, gearbox cover, transmission system covers, panels of the body etc. Sound radiation characteristics are also important in the phenomenon of resonant sound transmission through a panel. Resonant sound transmission occurs because of resonant modes of the panel within the frequency bandwidth of interest. Typical example of resonant sound transmission is the transmission through a firewall of an automobile, which forms the partition between the engine compartment and the cabin interior. Radiation characteristics can be typically defined by radiated sound power, radiation efficiency and space average mean square velocity of the panel.
Technical Paper

New Metrics for Quantifying the Energy Efficiency of Platoons in the Presence of Disturbances

2022-03-29
2022-01-0526
Due to aerodynamic drag reduction, vehicles may have significant energy savings while platooning in close succession. However, when circumstances force active deceleration to maintain the platoon, such as during vehicle cut-ins or grade changes, the aerodynamic efficiency benefits may be undermined by losses in kinetic energy. In this work, a theoretical relationship is derived to correlate the amount of active deceleration a vehicle experiences with energy efficiency. The derived relationship is leveraged to analyze platooning data from the last vehicle in a class 8 vehicle platoon. The data include both two- and four-truck platoons operating under nine different truck-to-truck gap control strategies. Using J1939 CAN data and GPS-estimated grade profiles, off-throttle data were isolated and longitudinal acceleration is estimated as a function of grade using Kalman filtering.
Technical Paper

Modeling the Effect of Thermal Barrier Coatings on HCCI Engine Combustion Using CFD Simulations with Conjugate Heat Transfer

2019-04-02
2019-01-0956
Thermal barrier coatings with low conductivity and low heat capacity have been shown to improve the performance of homogeneous charge compression ignition (HCCI) engines. These coatings improve the combustion process by reducing heat transfer during the hot portion of the engine cycle without the penalty thicker coatings typically have on volumetric efficiency. Computational fluid dynamic simulations with conjugate heat transfer between the in-cylinder fluid and solid piston of a single cylinder HCCI engine with exhaust valve rebreathing are carried out to further understand the impacts of these coatings on the combustion process. For the HCCI engine studied with exhaust valve rebreathing, it is shown that simulations needed to be run for multiple engine cycles for the results to converge given how sensitive the rebreathing process is to the residual gas state.
Technical Paper

Modeling of Engine Cyclic Variation by a Thermodynamic Model

2002-10-21
2002-01-2736
Kantor model showing that prior-cycle effects resulting from exhaust gas residuals are a significant factor in cyclic variability of combustion in IC engines is due to a number of model assumptions that misrepresent the thermodynamic process experienced by the mixture of fresh combustible gas plus exhaust residual in important ways. In particular we show that exhaust blowdown process and variable exhaust residual gas mass fraction, neglected in the Kantor model, significantly reduce cyclic variability. However, unburned fuel not considered in the Kantor model apparently aggravates cyclic variability. These three factors cancel each other resulting in cyclic variation appeased. Using modified Kantor models, we examine the effects of all major engine operating parameters on mean and fluctuating exhaust residual temperature and indicated work. No significant cyclic variability is predicted for realistic ranges of these parameters.
Journal Article

Impact of Mixed Traffic on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0679
A two-truck platoon based on a prototype cooperative adaptive cruise control (CACC) system was tested on a closed test track in a variety of realistic traffic and transient operating scenarios - conditions that truck platoons are likely to face on real highways. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate, serving as proxies to evaluate the impact of aerodynamic drag reduction under constant-speed conditions. These measurements demonstrate the effects of: the presence of a multiple-passenger-vehicle pattern ahead of and adjacent to the platoon, cut-in and cut-out manoeuvres by other vehicles, transient traffic, the use of mismatched platooned vehicles (van trailer mixed with flatbed trailer), and the platoon following another truck with adaptive cruise control (ACC).
Technical Paper

Experimentally Establishing Ideal Platooning Performance as a Metric for Real-World Platooning Assessment

2022-03-29
2022-01-0069
Platooning heavy-duty trucks decreases aerodynamic drag for following trucks, reducing energy consumption, and increasing both range and mileage. Previous platooning experimentation has demonstrated fuel economy benefits in two-, three-, and four-truck configurations. However, exogenous variables disturb the ability of these platoons to maintain the desired formation, causing an accordion effect within the platoon and reducing energy benefits via acceleration/deceleration events. This phenomenon is increasingly exacerbated as platoon size and road grade variations increase. The current work assesses how platoon size, road curvature, and road grade influence platoon energy efficiency. Fuel consumption rate is experimentally quantified for four heterogeneous Class 8 vehicles operating in standalone (baseline), two-, and four-truck platooning configurations to assess fuel consumption changes while driving through diverse road conditions.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Expanding the Use of Vehicle Specific Power in Analysis of Platoon Performance

2024-04-09
2024-01-2057
Platooning is a coordinated driving strategy by which following trucks are placed into the wake of leading vehicles. Doing this leads to two primary benefits. First, the vehicles following are shielded from aerodynamic drag by a “pulling” effect. Secondly, by placing vehicles behind the leading truck, the leading vehicles experience a “pushing” effect. The reduction in aerodynamic drag leads to reduced fuel usage and, consequently, reduced greenhouse gas emissions. To maximize these effects, the inter-vehicle distance, or headway, needs to be minimized. In current platooning strategy iterations, Coordinated Adaptive Cruise Control (CACC) is used to maintain close following distances. Many of these strategies utilize the fuel rate signal as a controller cost function parameter. By using fuel rate, current control strategies have limited applicability to non-conventional powertrains.
Technical Paper

Drag Forces Experienced by Two, Full-Scale Vehicles at Close Spacing

1998-02-01
980396
The present study aims to document the drag reduction for a two-vehicle platoon by operating two full-scale Ford Windstar vans in tandem on a desert lakebed. Drag forces are measured with the aid of a special tow bar force measuring system designed and manufactured at USC. The testing procedure consists of a smooth acceleration, followed by a smooth deceleration of the platoon. Data collected during acceleration allows the calculation of the drag force on the trail-vehicle, while data collected during deceleration is used to calculate the drag on the lead vehicle. Results from the full-scale tests show that the drag behaviors for the two vans are in general agreement with the earlier conclusions drawn from the wind tunnel testsænamely, both vans experience substantial drag savings at spacings of a fraction of a car length.
Technical Paper

Drag Forces Experienced by 2, 3 and 4-Vehicle Platoons at Close Spacings

1995-02-01
950632
Drag measurements are made on each of the members of 2, 3 & 4-vehicle platoons. One-eighth scale vehicle models are used in a wind tunnel equipped with a suction surface ground plane for boundary layer control. Strong interaction between vehicles takes place for spacings less than one vehicle length, leading to drag values substantially lower than for an isolated vehicle. All vehicles in the platoon experience lower drag. The average drag coefficient for a 4-vehicle platoon at a nominal spacing of 0.2 vehicle lengths is just 56 percent of the drag of the vehicle in isolation. It is also concluded that little additional benefit is achieved by forming platoons longer than 6-7 vehicles. Finally, the 2-vehicle platoons are operated in different orientations-front-to-front, back-to-back and reversed-to provide an estimate for drag reduction sensitivity to vehicle shape.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Journal Article

Development and Validation of a Reduced Order Model Incorporating a Semi-Empirical Degradation Model for Pouch Type LiFePO4/Graphite Cells

2017-03-28
2017-01-1218
We propose a reduced order model (ROM) for LFP/graphite cells derived from the electrochemical thermal principles that considers degradation effects and validated against experimental data obtained from a large format pouch type LFP/graphite cell whose nominal capacity is 20Ah. The characteristics of the two-phase transition and path dependence were taken into account in the ROM using a shrinking-core model with a moving interface that presents lithium rich and deficient phase. Different currents (0.1/1/3/4C) were applied to fresh cells at different ambient temperatures (25/35/45°C). Comparison between simulated results of the ROM and the collected experimental data shows a good match. The path dependence was also analyzed experimentally. For degradation model, side reaction is treated as the predominant cause of degradation of cells, which are affected by the operating conditions, such as temperature and SOC cycling range.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
X