Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Wood Microfibres - Effective Reinforcing Agents for Composites

2006-04-03
2006-01-0106
This work is based on a process to develop novel cellulose microfibre reinforced composite materials, and to understand fundamental mechanical properties of these composites. Cellulose microfibres having diameters <1 μm were generated from bleached kraft pulp by a combination of high shear refining and subsequent cryocrushing under liquid nitrogen, followed by filtration through a 60 mesh screen. Through film casting in polyvinyl alcohol, theoretical stiffness of the microfibres was calculated as 69 GPa. Subsequently, these microfibres were successfully dispersed in the bioplastics thermoplastic starch and polylactic acid (PLA), using conventional processing equipments. The high aspect ratio of these microfibres coupled with their high tensile properties imparted superior mechanical strength and stiffness to the composites. These indicated that by suitably choosing the polymer, excellent reinforcement can be achieved for high end applications like automotive parts.
Technical Paper

Validation Tests for a Fast Response Flame Ionisation Detector for In-Cylinder Sampling Near the Spark Plug

1996-05-01
961201
The air/fuel ratio (AFR) is a key contributor to both the performance and emissions of an automotive engine. Its variation between cylinders - and between engine cycles - is of particular importance, especially during throttle transients. This paper explores the use of a fast flame ionisation detector (FFID) to quantify these rapid changes of in-cylinder composition in the vicinity of the spark gap. While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. Others have used the FFID for this purpose, but the planned test conditions placed special demands on the instrument. These made it prudent to explore the limits of its operating envelope and to validate the experimental technique. For in-cylinder sampling, the instrument must always be insensitive to the large pressure changes over the engine cycle. With the wide range of engine loads of interest here, this constraint becomes even more crucial.
Technical Paper

The Effect of Surface Modification on the Mechanical Properties of Hemp Fiber/Polyester Composites

2004-03-08
2004-01-0728
In this work hemp fibers were chemically treated in order to improve the fiber/matrix interaction in hemp fiber/unsaturated polyester composites prepared by a Resin Transfer Molding (RTM) process. Chemicals used for paper sizing (AKD, ASA, Rosin Acid and SMA) as well as a silane compound and sodium hydroxide were used to modify the fibers' surface. The tensile, flexural and impact properties of the resulting materials were measured. A slight improvement in mechanical properties was observed for the SMA, silane and alkali treated specimens. However close analysis of these tests and of the fracture surface of the samples showed that there was no amelioration of the fiber/matrix adhesion. It was found that predicted tensile strengths using the rule of mixture were very close to the experimental values obtained in this work. Finally the properties of an hybrid glass fiber/hemp fiber composite were found to be very promising
Technical Paper

The Effect of Oxygenated Additives on Soot Precursor Formation in a Counterflow Diffusion Flame

1999-10-25
1999-01-3589
A counter–flow propane/air diffusion flame (ϕ= 1.79) is used for a fundamental analysis of the effects of oxygenated additives on soot precursor formation. Experiments are conducted at atmospheric pressure using Gas Chromatography for gas sample analysis. The oxygenated additives dimethyl carbonate (DMC) and ethanol are added to the fuel keeping the total volumetric fuel flow rate constant. Results show 10 vol% DMC significantly reduces acetylene, benzene, and other flame pyrolysis products. Ethanol (10 vol%) shows, instead, more modest reductions. Peak acetylene and benzene levels decrease as the additive dosage increases for both DMC and ethanol. The additive's effect on the adiabatic flame temperature and the fuel stream carbon content does not correlate significantly with acetylene levels. However, there does appear to be a linear relationship between acetylene concentrations and both the additive's oxygen and C–C bond content.
Technical Paper

The Effect of Fiber Surface Treatment on the Performance of Hemp Fiber/Acrylic Composites for Automotive Structural Parts

2006-04-03
2006-01-0005
The use of natural fibers for polymer composite materials has increased tremendously in the last few years. This type of reinforcements offers many advantages such as low density, low cost, high specific strength and low environmental impacts. The performance of the natural fiber composites are affected by the fiber loading, the individual mechanical properties of each component (fiber and matrix), and the fiber and matrix adhesion. Concerning the interfacial interaction, natural fibers present a major drawback because of poor compatibility of fibers with most hydrophobic thermoplastic and thermoset matrix. Hemp fiber/acrylic composites were manufactured with sheet molding technique recently. Although mechanical tests give promising results, they exhibit low tensile strength resulting from a poor fiber/matrix adhesion. The moisture resistance property of the sheet molded composites also needs further improvement.
Technical Paper

Measurement of Swelling for PP/Gas Mixtures

2005-04-11
2005-01-1672
Foaming of thermoplastic polyolefins (TPO) and thermoplastic elastomers (TPE) is gaining interest because of the lightweight and high performance to weight ratio of foamed automotive parts. Since foaming will occur mainly in the PP matrix in these PP-based automotive materials, understanding of the thermophysical properties of PP/gas mixtures is critically important. This paper will present a proposed methodology for measuring the swelling of polymer/gas mixtures. The preliminary experimental measurement of PP/N2 swelling at elevated temperatures and pressures will be discussed.
Technical Paper

Instantaneous In-Cylinder Hydrocarbon Concentration Measurement during the Post-Flame Period in an SI Engine

1999-10-25
1999-01-3577
Crevices in the combustion chamber are the main source of hydrocarbon (HC) emissions from spark ignition (SI) engines fuelled by natural gas (NG). Instantaneous in-cylinder and engine exhaust port HC concentrations were measured simultaneously using a Cambustion HFR400 fast response flame ionization detector (FRFID) concentrated on the post-flame period. The raw data was reconstructed to account for variation in the FFRID sample transit time and time constant due to fluctuating in-cylinder pressure. HC concentration development during the post-flame period is discussed. Comparison is made of the post-flame in-cylinder and exhaust port HC concentrations under different engine operating conditions, which gives a better understanding of the mechanism by which HC emissions form from crevices in SI engines.
Technical Paper

Injection Molded Hybrid Natural Fibre - Thermoplastic Composites for Automotive Interior Parts

2004-03-08
2004-01-0014
Eco-efficient and cost effective natural fibre - thermoplastic composites have gained attention to a great extent in the automotive industry. Most of the OEM specifications for automotive interior parts, for example, instrument panels, recommend the composite should have a minimum flexural modulus of 1900 MPa, a notched Impact strength greater than 150 J/m at room temperature and a melt flow index of 5 g/10min and above [1, 2 and 3]. The objective of this work was to develop a high performance hybrid composite by injection molding process of the composites made from natural fibre in combination with glass fibre or calcium carbonate in a thermoplastic matrix to meet the specifications required for automotive interior parts applications. Mechanical properties, such as tensile and flexural strengths and moduli of the composites prepared, were found to be highly promising.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

2018-04-03
2018-01-0355
Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Technical Paper

Foamability of Thermoplastic Vulcanizates (TPVs) with Various Physical Blowing Agents (PBAs)

2006-04-03
2006-01-0972
Thermoplastic Vulcanizate (TPV) is a special class of Thermoplastic Elastomers (TPEs) made of a rubber/plastic polymer mixture in which the rubber phase is highly vulcanized. It is prepared by melt mixing a thermoplastic with an elastomer and by in-situ crosslinking of the rubber phase. Currently, TPV is replacing EPDM rubber dramatically because of the impressive advantages for automotive sealing applications. Some of the advantages of TPV compared to that of EPDM rubber are good gloss, recyclability, improved colorability, shorter cycle time and design flexibility. The development of TPV foaming technology is to fulfill the requirement of achieving lower cost, lighter weight and better fuel economy. Foaming of TPV has not been investigated extensively.
Journal Article

Finite Element Analysis of Friction-Assisted Powder Compaction Process

2012-04-16
2012-01-0051
The major disadvantage of powder metallurgy (PM) is the density gradient throughout the green powder compacts. During the compaction process, due to the existence of friction at powder-tool interfaces, the contact surfaces experience a non-uniform stress distribution having to do with variable friction coefficient and tool kinematics, consequently resulting in density gradient throughout the powder compacts. This represents a serious problem in terms of the reliability and performance of a final product, as the density gradient may contribute to a crack-defect generation during the compaction cycle, and more importantly a non-uniform compact shrinkage during the sintering process. Simulation analyses were conducted using the finite element software, MSC.Marc Mentat, and Shima and Oyane powder constitutive model, to study and suppress the causes of density gradient in the cylindrically shaped green powder compacts.
Technical Paper

Application of Nonlinear Transformations to A/F Ratio and Speed Control in an IC Engine

1999-03-01
1999-01-0858
This paper presents the first application of the global feedback linearization method to an internal combustion (IC) engine. Through the application of this nonlinear control technique, the nonlinear coupled dynamics of the IC engine are globally linearized and decoupled. This represents a significant advance over previously published control approaches which rely on locally linearized dynamic models. With the IC engine dynamics globally linearized and decoupled, outer-loop controllers can be readily designed using simple linear tracking controller design methods, leading to very good dynamic response of three key IC engine outputs, air/fuel ratio, engine speed and manifold air pressure. In this paper, a standard IC engine model from the literature is first transformed to a controllable canonical form, required for the application of the global feedback linearization methods.
Technical Paper

An Experimental Investigation into the Characteristics of a Fast-Response Flame Ionization Detector for In-Cylinder Sampling

1999-10-25
1999-01-3538
The Cambustion fast-response flame ionization detector (FFID) has been successfully used for instantaneous exhaust port hydrocarbon (HC) concentration measurement in IC engines for a decade. Measurements of in-cylinder HC concentration have also been made, but these present greater challenge. As the sample transit time and the time constant of the system always change when the sampling pressure is changed, it is necessary to investigate the characteristics of the system before it was used for in-cylinder sampling. A unique method was designed to study the influence of the diameter and length of the transfer sample line and the operating parameters of the FFID on the transit time and time constant. A database of transit time and time constant was built up for different simulated in-cylinder pressures. The database can be used for correcting eventual in-cylinder HC concentration measurement.
Technical Paper

Accurate Measurement of PVT Data for PP/Gas and TPO/Gas Mixtures

2006-04-03
2006-01-0506
Foaming of a thermoplastic polyolefin (TPO) is gaining interests because of its superior mechanical properties of foamed automotive parts, such as lightweight and high performance to weight ratio, etc. In this context, understanding of the thermophysical properties of PP/gas and TPO/gas mixtures is critically important. This paper will present the newly developed experimental technique to accurately measure the swelling of PP and TPO due to gas dissolution at elevated temperatures and pressures. Our technique measures the geometry of the pendent drop accurately from the captured images to obtain the volume swelling data. It determines the boundary location of the polymer/gas sample accurately by magnifying the sample drop locally along its edge before capturing the image. The automated high-precision XY stage is chosen as the platform to control the motion of the CCD camera.
X