Refine Your Search

Topic

Author

Search Results

Technical Paper

Tribological Factors Affecting the LDH Test

1992-02-01
920434
The present work is aimed at investigating the tribological factors influencing the LDH test. The material used was AKDQ cold-rolled bare steel, 0.82mm thick. The investigated factors included: test speed (0.833, 4.167, 6.667, and 8.333 mm/s), lubricant viscosity (4.5, 7.0, and 12.5 mm2/s), punch roughness (0.033 and 0.144 μm Ra), and test temperature (25 and 50 °C). Test speed and lubricant viscosity form a variation of the numerator of the Stribeck curve's x-axis (ηV). With ηV increasing from 4 to 120 mm3/s2 friction decreased, resulting in a 0.5 mm higher LDH. Increasing the punch roughness decreased friction producing an increase of 0.25 mm in the LDH. There appears to be an optimum roughness -- at which the roughness features act as lubricant reservoirs but the asperities do not break through the lubricant film -- resulting in minimum friction, therefore, maximum LDH.
Technical Paper

Transient Tribological Phenomena in Drawbead Simulation

1992-02-01
920634
Details of the development of metal transfer and friction were studied by drawing cold-rolled bare, galvannealed, electrogalvanized, and hot-dip galvanized strips with a mineral-oil lubricant of 30 cSt viscosity at 40 C, over a total distance of 2500 mm by three methods. An initial high friction peak was associated with metal transfer to the beads and was largest with pure zinc and smallest with Fe-Zn coatings. Insertion of a new strip disturbed the coating and led to the development of secondary peaks. Long-term trends were governed by the stability of the coating. Stearic acid added to mineral oil delayed stabilization of the coating and increased contact area and thus friction with pure zinc surfaces. The usual practice of reporting average friction values can hide valuable information on lubrication mechanisms and metal transfer.
Technical Paper

Three-Dimensional Electrochemical Analysis of a Graphite/LiFePO4 Li-Ion Cell to Improve Its Durability

2015-04-14
2015-01-1182
Lithium-ion batteries (LIBs) are one of the best candidates as energy storage systems for automobile applications due to their high power and energy densities. However, durability in comparison to other battery chemistries continues to be a key factor in prevention of wide scale adoption by the automotive industry. In order to design more-durable, longer-life, batteries, reliable and predictive battery models are required. In this paper, an effective model for simulating full-size LIBs is employed that can predict the operating voltage of the cell and the distribution of variables such as electrochemical current generation and battery state of charge (SOC). This predictive ability is used to examine the effect of parameters such as current collector thickness and tab location for the purpose of reducing non-uniform voltage and current distribution in the cell. It is identified that reducing the non-uniformities can reduce the ageing effects and increase the battery durability.
Journal Article

Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach

2015-04-14
2015-01-1184
The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C.
Technical Paper

Thermal Behavior of Two Commercial Li-Ion Batteries for Plug-in Hybrid Electric Vehicles

2014-04-01
2014-01-1840
In electrified vehicle applications, the heat generated of lithium-ion (Li-ion) cells may significantly affect the vehicle range and state of health (SOH) of the pack. Therefore, a major design task is creation of a battery thermal management system with suitable control and cooling strategies. To this end, the thermal behavior of Li-ion cells at various temperatures and operating conditions should be quantified. In this paper, two different commercial pouch cells for plug-in hybrid electric vehicles (PHEVs) are studied through comprehensive thermal performance tests. This study employs a fractional factorial design of experiments to reduce the number of tests required to characterize the behavior of fresh cells while minimizing the effects of ageing. At each test point, the effects of ambient temperature and charge/discharge rate on several types of cell efficiencies and surface heat generation are evaluated.
Technical Paper

The University of Waterloo Alternative Fuels Team's Approach to EcoCAR 2

2012-09-10
2012-01-1761
A series plug-in hybrid electric powertrain with all-wheel drive is designed using real-world drive cycles as part of the EcoCAR 2 competition. A stock 2013 Chevrolet Malibu Eco is being re-engineered to reduce fuel consumption and emissions while improving consumer acceptability. Waterloo utilizes a 18.9 kWh A123 energy storage system (ESS), which powers two 105 kW TM4 traction motors. A 2.4 L LE9 General Motors coupled to a 105 kW TM4 motor provides range extending performance. Each step of the design process is discussed, including a novel approach to powertrain selection and controls requirement selection that uses real-world drive cycles. The mechanical integration and unique ESS design is also discussed.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

Report of NADDRG Friction Committee on Reproducibility of Friction Tests within and Between Laboratories

1993-03-01
930811
The present paper offers a status report on round-robin tests conducted with the participation of ten laboratories, with drawbead simulation (DBS) as the test method. The results showed that, in most laboratories, the coefficient of friction (COF) derived from the test is repeatable within an acceptable range of ±0.01. Repeatability between laboratories was less satisfactory. Five laboratories reported results within the desirable band, while some laboratories found consistently higher values. In one instance this could be traced to incomplete transfer of clamp forces to the load cell, in other instances inaccurate test geometry is suspected. Therefore, numerical values of COF from different laboratories are not necessarily comparable. Irrespective of these inter-laboratory variations, the relative ranking of lubricants was not affected, and data generated within one laboratory can be used for relative evaluations and for a resolution of production problems.
Technical Paper

Refrigeration Load Identification of Hybrid Electric Trucks

2014-04-01
2014-01-1897
This paper seeks to identify the refrigeration load of a hybrid electric truck in order to find the demand power required by the energy management system. To meet this objective, in addition to the power consumption of the refrigerator, the vehicle mass needs to be estimated. The Recursive Least Squares (RLS) method with forgetting factors is applied for this estimation. As an example of the application of this parameter identification, the estimated parameters are fed to the energy control strategy of a parallel hybrid truck. The control system calculates the demand power at each instant based on estimated parameters. Then, it decides how much power should be provided by available energy sources to minimize the total energy consumption. The simulation results show that the parameter identification can estimate the vehicle mass and refrigeration load very well which is led to have fairly accurate power demand prediction.
Journal Article

Physics-Based Models, Sensitivity Analysis, and Optimization of Automotive Batteries

2013-10-14
2013-01-2560
The analysis of nickel metal hydride (Ni-MH) battery performance is very important for automotive researchers and manufacturers. The performance of a battery can be described as a direct consequence of various chemical and physical phenomena taking place inside the container. In this paper, a physics-based model of a Ni-MH battery will be presented. To analyze its performance, the efficiency of the battery is chosen as the performance measure, which is defined as the ratio of the energy output from the battery and the energy input to the battery while charging. Parametric sensitivity analysis will be used to generate sensitivity information for the state variables of the model. The generated information will be used to showcase how sensitivity information can be used to identify unique model behavior and how it can be used to optimize the capacity of the battery. The results will be validated using a finite difference formulation.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Modeling and Evaluation of Li-Ion Battery Performance Based on the Electric Vehicle Field Tests

2014-04-01
2014-01-1848
In this paper, initial results of Li-ion battery performance characterization through field tests are presented. A fully electrified Ford Escape that is equipped by three Li-ion battery packs (LiFeMnPO4) including an overall 20 modules in series is employed. The vehicle is in daily operation and data of driving including the powertrain and drive cycles as well as the charging data are being transferred through CAN bus to a data logger installed in the vehicle. A model of the vehicle is developed in the Powertrain System Analysis Toolkit (PSAT) software based on the available technical specification of the vehicle components. In this model, a simple resistive element in series with a voltage source represents the battery. Battery open circuit voltage (OCV) and internal resistance in charge and discharge mode are estimated as a function of the state of charge (SOC) from the collected test data.
Technical Paper

Measurement of Temperature Gradient (dT/dy) and Temperature Response (dT/dt) of a Prismatic Lithium-Ion Pouch Cell with LiFePO4 Cathode Material

2017-03-28
2017-01-1207
Lithium-ion batteries, which are nowadays common in laptops, cell phones, toys, and other portable electronic devices, are also viewed as a most promising advanced technology for electric and hybrid electric vehicles (EVs and HEVs), but battery manufacturers and automakers must understand the performance of these batteries when they are scaled up to the large sizes needed for the propulsion of the vehicle. In addition, accurate thermo-physical property input is crucial to thermal modeling. Therefore, a designer must study the thermal characteristics of batteries for improvement in the design of a thermal management system and also for thermal modeling. This work presents a purely experimental thermal characterization in terms of measurement of the temperature gradient and temperature response of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Technical Paper

Impact of Temperature on the A123 Li-Ion Battery Performance and Hybrid Electric Vehicle Range

2013-04-08
2013-01-1521
Within the last decade, the automotive industry has made major progress toward the electrification of drive trains and application of electrochemical power sources. Among available storage solutions, Li-ion batteries are considered as the most attractive and are set to be used in the next generation of hybrid and electric vehicles. This is due to their superiority in energy density, power density, and low self-discharge and high cycle life compared to other chemistries. However, there are some limitations associated with Li-ion battery; among them is the operating temperature range. Any deviation from a narrow temperature range may result in low overall performance and potential degradation of the cells. In this paper, impact of ambient temperature on the A123 Li-ion batteries performance is investigated. A123 cells have been tested under constant charge-discharge cycles, hybrid pulse power characterization (HPPC) tests and also standard drive cycle tests.
Technical Paper

Identification of the Plane Strain Yield Strength of Anisotropic Sheet Metals Using Inverse Analysis of Notch Tests

2022-03-29
2022-01-0241
Plane strain tension is the critical stress state for sheet metal forming because it represents the extremum of the yield function and minima of the forming limit curve and fracture locus. Despite its important role, the stress response in plane strain deformation is routinely overlooked in the calibration of anisotropic plasticity models due to challenges and uncertainty in its characterization. Plane strain tension test specimens used for constitutive characterization typically employ large gage width-to-thickness ratios to promote a homogeneous plane strain stress state. Unfortunately, the specimens are limited to small strain levels due to fracture initiating at the edges in uniaxial tension. In contrast, notched plane strain tension coupons designed for fracture characterization have become common in the automotive industry to calibrate stress-state dependent fracture models. These coupons have significant stress and strain gradients across the gage width to avoid edge fracture.
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
X