Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Technical Paper

Variable Characteristic Permanent Magnet Motor for Automobile Application

2014-04-01
2014-01-1869
This paper describes a variable magnetomotive force interior permanent magnet (IPM) machine for use as a traction motor on automobiles in order to reduce total energy consumption during duty cycles and cut costs by using Dy-free magnets. First, the principle of a variable magnetomotive force flux-intensifying IPM (VFI-IPM) machine is explained. A theoretical operating point analysis of the magnets using a simplified model with nonlinear B-H characteristics is presented and the results are confirmed by nonlinear finite element analysis. Four types of magnet layouts were investigated for the magnetic circuit design. It was found that a radial magnetization direction with a single magnet is suitable for the VFI-IPM machine. Magnetization controllability was investigated with respect to the magnet thickness, width and coercive force for the prototype design. The estimated variable motor speed and torque characteristics are presented.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of a Reduced Chemical Mechanism Coupled to CFD Model in a 2-Stroke HCCI Engine

2015-04-14
2015-01-0392
Homogeneous Charge Compression Ignition (HCCI) combustion technology has demonstrated a profound potential to decrease both emissions and fuel consumption. In this way, the significance of the 2-stroke HCCI engine has been underestimated as it can provide more power stroke in comparison to a 4-stroke engine. Moreover, the mass of trapped residual gases is much larger in a 2-stroke engine, causing higher initial charge temperatures, which leads to easier auto-ignition. For controlling 2-stroke HCCI engines, it is vital to find optimized simulation approaches of HCCI combustion with a focus on ignition timing. In this study, a Computational Fluid Dynamic (CFD) model for a 2-stroke gasoline engine was developed coupled to a semi-detailed chemical mechanism of iso-octane to investigate the simulation capability of the considered chemical mechanism and the effects of different simulation parameters such as the turbulence model, grid density and time step size.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Uncertainty Quantification of Direct Injection Diesel and Gasoline Spray Simulations

2017-03-28
2017-01-0836
In this paper, large eddy simulation (LES) coupled with two uncertainty quantification (UQ) methods, namely latin-hypercube sampling (LHS) and polynomial chaos expansion (PCE), have been used to quantify the effects of model parameters and spray boundary conditions on diesel and gasoline spray simulations. Evaporating, non-reacting spray data was used to compare penetration, mixture fraction and spray probability contour. Two different sets of four uncertain variables were used for diesel and gasoline sprays, respectively. UQ results showed good agreement between experiments and predictions. UQ statistics indicated that discharge coefficient has stronger impact on gasoline than diesel sprays, and spray cone angle is important for vapor penetration of both types of sprays. Additionally, examination of the gasoline spray characteristics showed that plume-to-plume interaction and nozzle dribble are important phenomena that need to be considered in high-fidelity gasoline spray simulations.
Technical Paper

UV Absorbance Histories and Knock in a Spark Ignited Engine

1969-02-01
690519
Monochromatic ultraviolet (UV) absorbance, temperature, and pressure histories of unburned gas in a single cylinder CFR engine under motored, fired, and autoignition conditions were recorded on a multichannel magnetic tape recorder. Isooctane, cyclohexane, ethane, n-hexane, n-heptane, 75 octane number (ON), 50 ON, and 25 ON blends of primary reference fuels (PRF) were studied. Under knocking or autoignition conditions a critical absorbance at 2600 A was found, whose magnitude was independent of engine operating variables and dependent only on the knock resistance of the fuel. This absorbance increased rapidly when a certain temperature level was exceeded during the exothermic preflame reactions.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

2015-04-14
2015-01-1745
For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduction of two fuels with different physical and chemical properties makes the combustion process complicated and challenging to model. In this study, a multi-zone approach is applied to NG-diesel RCCI combustion in a heavy-duty engine. Auto-ignition chemistry is believed to be the key process in RCCI. Starting from a multi-zone model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the in-cylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

1967-02-01
670466
This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Journal Article

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion

2017-03-28
2017-01-0773
Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

2013-04-08
2013-01-1092
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
X