Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Variable Characteristic Permanent Magnet Motor for Automobile Application

2014-04-01
2014-01-1869
This paper describes a variable magnetomotive force interior permanent magnet (IPM) machine for use as a traction motor on automobiles in order to reduce total energy consumption during duty cycles and cut costs by using Dy-free magnets. First, the principle of a variable magnetomotive force flux-intensifying IPM (VFI-IPM) machine is explained. A theoretical operating point analysis of the magnets using a simplified model with nonlinear B-H characteristics is presented and the results are confirmed by nonlinear finite element analysis. Four types of magnet layouts were investigated for the magnetic circuit design. It was found that a radial magnetization direction with a single magnet is suitable for the VFI-IPM machine. Magnetization controllability was investigated with respect to the magnet thickness, width and coercive force for the prototype design. The estimated variable motor speed and torque characteristics are presented.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Uncertainty Quantification of Direct Injection Diesel and Gasoline Spray Simulations

2017-03-28
2017-01-0836
In this paper, large eddy simulation (LES) coupled with two uncertainty quantification (UQ) methods, namely latin-hypercube sampling (LHS) and polynomial chaos expansion (PCE), have been used to quantify the effects of model parameters and spray boundary conditions on diesel and gasoline spray simulations. Evaporating, non-reacting spray data was used to compare penetration, mixture fraction and spray probability contour. Two different sets of four uncertain variables were used for diesel and gasoline sprays, respectively. UQ results showed good agreement between experiments and predictions. UQ statistics indicated that discharge coefficient has stronger impact on gasoline than diesel sprays, and spray cone angle is important for vapor penetration of both types of sprays. Additionally, examination of the gasoline spray characteristics showed that plume-to-plume interaction and nozzle dribble are important phenomena that need to be considered in high-fidelity gasoline spray simulations.
Technical Paper

UV Absorbance Histories and Knock in a Spark Ignited Engine

1969-02-01
690519
Monochromatic ultraviolet (UV) absorbance, temperature, and pressure histories of unburned gas in a single cylinder CFR engine under motored, fired, and autoignition conditions were recorded on a multichannel magnetic tape recorder. Isooctane, cyclohexane, ethane, n-hexane, n-heptane, 75 octane number (ON), 50 ON, and 25 ON blends of primary reference fuels (PRF) were studied. Under knocking or autoignition conditions a critical absorbance at 2600 A was found, whose magnitude was independent of engine operating variables and dependent only on the knock resistance of the fuel. This absorbance increased rapidly when a certain temperature level was exceeded during the exothermic preflame reactions.
Technical Paper

Two-stage Gear Driveline Vibration and Noise

2011-05-17
2011-01-1542
Gear meshing noise is a common noise issue in manual transmission, its noise generation mechanism has been studied extensively [1, 2]. But most of time we have situations where multiple gear sets are connected in series and the noise and vibration behavior for a multi-stage gear can be quite different due to vibration inter-actions or interferences among multiple gear sets. In this paper, a two-stage gear driveline model was built using MSC ADAMS. Vibration order contents of a two-stage gear driveline were analyzed by both CAE simulation and theoretical calculations. In addition to gear meshing vibration orders of each gear set, the orders resulted from modulations between individual gear meshing and their harmonics were evident in the results. These special order contents were verified by experimental results, and also evidenced on transmission end of line tester results at transmission supplier GJT in Ganzhou, China.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

1967-02-01
670466
This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Journal Article

Theoretical and Experimental Ride Comfort Assessment of a Subject Seated into a Car

2010-04-12
2010-01-0777
A comprehensive research is presented aiming at assessing the ride comfort of subjects seated into road or off-road vehicles. Although many papers and books have appeared in the literature, many issues on ride comfort are still to be understood, in particular, the paper investigates the mutual effects of the posture and the vibration caused mostly from road unevenness. The paper is divided into two parts. In the first part, a mathematical model of a seated subject is validated by means of actual measurements on human subjects riding on a car. Such measurements refer to the accelerations acting at the subject/seat interface (vertical acceleration at the seat cushion and horizontal acceleration at the seat back). A proper dummy is used to derive the seat stiffness and damping.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Journal Article

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion

2017-03-28
2017-01-0773
Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI.
Technical Paper

The Effect of a TiO2 Coating with the Addition of H2 Gas on Emissions of a Small Spark-Ignition Engine

2014-11-11
2014-32-0034
This study looks at the application of a titanium dioxide (TiO2) catalytic nanoparticle suspension to the surface of the combustion chamber as a coating, as well as the addition of hydrogen gas to a four-stroke spark-ignited carbureted engine as a possible technique for lowering engine-out emissions. The experiments were conducted on two identical Generac gasoline powered generators using two, four and six halogen work lamps to load the engine. One generator was used as a control and the second had key components of the combustion chamber coated with the catalytic suspension. In addition to the coating, both engines were fed a hydrogen and oxygen gas mixture and tested at low, medium and high loads. Using an unmodified engine as a control set, the following three conditions were tested and compared: addition of hydrogen only, addition of coating only, and addition of hydrogen to the coated engine.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Technical Paper

The Detection of Visual Distraction using Vehicle and Driver-Based Sensors

2016-04-05
2016-01-0114
Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
X