Refine Your Search

Topic

Author

Search Results

Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

2003-03-03
2003-01-0349
To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

The Effect of Ethanol Fuels on the Power and Emissions of a Small Mass-Produced Utility Engine

2020-01-24
2019-32-0607
The effect of low level ethanol fuel on the power and emissions characteristics was studied in a small, mass produced, carbureted, spark-ignited, Briggs and Stratton Vanguard 19L2 engine. Ethanol has been shown to be an attractive renewable fuel by the automotive industry; having anti-knock properties, potential power benefits, and emissions reduction benefits. With increasing availability and the possible mandates of higher ethanol content in pump gasoline, there is interest in exploring the effect of using higher content ethanol fuels in the small utility engine market. The fuels in this study were prepared by gravimetrically mixing 98.7% ethanol with a balance of 87 octane no-ethanol gasoline in approximately 5% increments from pure gasoline to 25% ethanol. Alcor Petrolab performed fuel analysis on the blended fuels and determined the actual volumetric ethanol content was within 2%.
Technical Paper

The Development of the University of Wisconsin's Parallel Hybrid-Electric Aluminum Intensive Vehicle

1999-03-01
1999-01-0613
For competition in the 1998 FutureCar Challenge (FCC98), the University of Wisconsin - Madison FutureCar Team has designed and built a lightweight, charge sustaining, parallel hybrid electric vehicle by modifying a 1994 Mercury Sable Aluminum Intensive Vehicle (AIV), nicknamed the Aluminum Cow. The Wisconsin team is striving for a combined, FTP cycle gasoline-equivalent fuel economy of 21.3 km/L (50 mpg) and Ultra Low Emissions Vehicle (ULEV) federal emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a full-size car. To reach these goals, Wisconsin has concentrated on reducing the overall vehicle weight. In addition to customizing the drivetrain, the team has developed a vehicle control strategy that both aims to achieve these goals and also allows for the completion of a reliable hybrid in a short period of time.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis

2002-10-21
2002-01-2869
A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1). The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

2004-09-27
2004-32-0005
Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
Technical Paper

Optimizing the University of Wisconsin's Parallel Hybrid-Electric Aluminum Intensive Vehicle

2000-03-06
2000-01-0593
The University of Wisconsin - Madison FutureCar Team has designed and built a lightweight, charge sustaining, parallel hybrid-electric vehicle for entry into the 1999 FutureCar Challenge. The base vehicle is a 1994 Mercury Sable Aluminum Intensive Vehicle (AIV), nicknamed the “Aluminum Cow,” weighing 1275 kg. The vehicle utilizes a high efficiency, Ford 1.8 liter, turbo-charged, direct-injection compression ignition engine. The goal is to achieve a combined FTP cycle fuel economy of 23.9 km/L (56 mpg) with California ULEV emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a full-size car. Strategies to reduce the overall vehicle weight are discussed in detail. Dynamometer and experimental testing is used to verify performance gains.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Optimization of a Large Diesel Engine via Spin Spray Combustion*

2005-04-11
2005-01-0916
A numerical simulation and optimization study was conducted for a medium speed direct injection diesel engine. The engine's operating characteristics were first matched to available experimental data to test the validity of the numerical model. The KIVA-3V ERC CFD code was then modified to allow independent spray events from two rows of nozzle holes. The angular alignment, nozzle hole size, and injection pressure of each set of nozzle holes were optimized using a micro-genetic algorithm. The design fitness criteria were based on a multi-variable merit function with inputs of emissions of soot, NOx, unburned hydrocarbons, and fuel consumption targets. Penalties to the merit function value were used to limit the maximum in-cylinder pressure and the burned gas temperature at exhaust valve opening. The optimization produced a 28.4% decrease in NOx and a 40% decrease in soot from the baseline case, while giving a 3.1% improvement in fuel economy.
Technical Paper

Optimization and Testing of a Through the Road Parallel, Hybrid-Electric, Crossover Sports Utility Vehicle

2009-04-20
2009-01-1318
The University of Wisconsin Hybrid Vehicle Team has implemented and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2008 ChallengeX competition. This four year project is based on a 2005 Chevrolet Equinox platform. Fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were appropriately weighted to determine powertrain component selections. Wisconsin's Equinox, nicknamed the Moovada, is a split-parallel hybrid utilizing a General Motors (GM) 110 kW 1.9L CDTi (common rail diesel turbo injection) engine coupled to an F40 6-speed manual transmission. The rear axle is powered by a SiemensVDO induction motor/gearbox power-limited to 65 kW by a 40-module (288 volts nominal) Johnson Controls Inc, nickel-metal hydride battery pack.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Investigation of Augmented Mixing Effects on Direct-Injection Stratified Combustion

2001-09-24
2001-01-3670
The effects of augmented mixing through the use of an auxiliary gas injection (AGI) were investigated in a direct-injection gasoline engine operated at a 22:1 overall air-fuel ratio, but with retarded injection timing such that the combustion was occurring in a locally rich mixture as evident by the elevated CO emissions. Two AGI gas compositions, nitrogen and air, were utilized, the gas supply temperature was ambient, and a wide range of AGI timings were investigated. The injected mass was less than 10% of the total chamber mass. The injection of nitrogen during the latter portion of the heat release phase resulted in a 25% reduction in the CO emissions. This reduction is considered to be the result of the increased mixing rate of the rich combustion products with the available excess air during a time when the temperatures are high enough to promote rapid oxidation.
Technical Paper

Integration of Hybrid-Electric Strategy to Enhance Clean Snowmobile Performance

2006-11-13
2006-32-0048
The University of Wisconsin-Madison Snowmobile Team designed and constructed a hybrid-electric snowmobile for the 2005 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 784 cc fuel-injected four-stroke engine in parallel with a 48 V electric golf cart motor. The 12 kg electric motor increases powertrain torque up to 25% during acceleration and recharges the snowmobile's battery pack during steady-state operation. Air pollution from the gasoline engine is reduced to levels far below current best available technology in the snowmobile industry. The four-stroke engine's closed-loop EFI system maintains stoichiometric combustion while dual three-way catalysts reduce NOx, HC and CO emissions by up to 94% from stock. In addition to the use of three way catalysts, the fuel injection strategy has been modified to further reduce engine emissions from the levels measured in the CSC 2004 competition.
Technical Paper

Injection and Ignition Effects on Two-Stroke Direct Injection Emissions and Efficiency

1996-08-01
961803
To help understand the fundamental processes involved in direct injection, a research project was conducted using a single-cylinder, two-stroke research engine at a mid-speed, boat load operating condition. A 24 statistical factorial experimental design was applied. Of the factors tested at this operating condition, spray type was the most important factor affecting hydrocarbon emissions, followed by in-cylinder flow-related factors. Injection spray was also most important for nitrogen oxide emissions, carbon monoxide emissions, and efficiency. The dominant mechanism influencing the results was misfire, with other mechanisms present for specific responses.
Technical Paper

Improvements in 3-D Modeling of Diesel Engine Intake Flow and Combustion

1992-09-01
921627
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation and the intake flow process. Improved and/or new submodels which have been completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops.
Technical Paper

High Pressure Multiple Injection Spray Characteristics

1996-02-01
960860
In previous work, high injection pressures and multiple injections per engine stroke were shown to be effective at reducing the NOx and particulate emissions of DI Diesel engine combustion [1, 2]. A series of experiments were performed to study the effects of injection pressure, back pressure, and injection strategy on the spray characteristics for multiple injections. An injection system which was capable of multiple injections was used to introduce diesel fuel into a constant volume cold spray chamber. Parallel engine experiments were conducted using the same injectors as in this work [1, 2, 3]. In these engine tests, emissions (NOx and particulate) were measured. The engine experiments were used to develop the injector and chamber operating conditions for this work. The injection pressure was varied up to 90 MPa.
Technical Paper

Exploration of Fuel Property Impacts on the Combustion of Late Post Injections Using Binary Blends and High-Reactivity Ether Bioblendstocks

2023-04-11
2023-01-0264
In this study, the impacts of fuel volatility and reactivity on combustion stability and emissions were studied in a light-duty single-cylinder research engine for a three-injection catalyst heating operation strategy with late post-injections. N-heptane and blends of farnesane/2,2,4,4,6,8,8-heptamethylnonane were used to study the impacts of volatility and reactivity. The effect of increased chemical reactivity was also analysed by comparing the baseline #2 diesel operation with a pure blend of mono-ether components (CN > 100) representative of potential high cetane oxygenated bioblendstocks and a 25 vol.% blend of the mono-ether blend and #2 diesel with a cetane number (CN) of 55. At constant reactivity, little to no variation in combustion performance was observed due to differences in volatility, whereas increased reactivity improved combustion stability and efficiency at late injection timings.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
X