Refine Your Search

Topic

Author

Search Results

Technical Paper

Unlocking the Potential of Water-Blended Karanji Ester and EGR in CI Engines: A Micro-Explosion Effect Investigation

2023-11-10
2023-28-0074
Biodiesel, which is made from the methyl ester of vegetable oils, is becoming more and more popular as an alternative fuel for compression ignition engines because it is good for the environment and can be used as a replacement fuel without making major changes to the engine. Biodiesel offers several key advantages, including its ready availability, environment friendly and its ability to contribute to lower carbondioxide levels in the atmosphere. An exhaust gas recirculation (EGR)-equipped Kirloskar compression ignition engine is used in this research to examine the influence of micro-explosions on the reduction of nitrogen oxides and smoke. The fuel chosen is Karanji oil methyl ester. The experiment involved varying the exhaust gas quantity in increments of 5%, ranging from 5% to 15%, as exhaust gas recirculation (EGR) is recognized as an effective technique for reducing NOx emissions. Similarly, the study also adjusted the water content, ranging from 5% to 15% in 5% increments.
Technical Paper

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Total Life Cycle Analysis of CNG and Hydrogen Enriched CNG Powered Vehicles: A Comparative Evaluation

2021-09-22
2021-26-0105
Vehicles consume energy and release harmful emissions throughout their life period from the manufacturing stage of raw materials to the vehicle scrapyard. The current Green-House Gas (GHG) emissions from diesel and petrol vehicles are reported to be 164 g CO2/km and 156 g CO2/km respectively. Thus, enormous research studies are been carried out for low-carbon alternative fuel-powered vehicles to reduce the overall GHG emissions. Numerous research on hydrogen as a transportation fuel has demonstrated the potential of reduced vehicular emissions compared to conventional fuels. Life cycle assessment (LCA) is a comprehensive methodology used for estimating the overall environmental impact of vehicles. In this present work, a comparative LCA is conducted between Compressed Natural gas (CNG) powered vehicles and H-CNG powered vehicles. The effect of the two alternative vehicles is assessed from various points in their lifetime using the GREET model software.
Technical Paper

Thermal Analysis of Aircraft Auxiliary Power Unit: Potential of Super-Critical CO2 Brayton Cycle

2019-03-19
2019-01-1391
An “APU” (Auxiliary Power Unit) is a small gas turbine engine to provide supplementary power to an aircraft and is located at the tails of larger jets. APU generators provide auxiliary electrical power for running aircraft systems on the ground. Applications include powering environmental systems for pre-cooling or preheating the cabin, and providing power for crew functions such as preflight, cabin cleanup, and galley (kitchen) operation and long-haul airliners must be started using pneumatic power of APU compressor. The Honeywell 131-9A gas turbine APU has 440 kW shaft power and 90 kW electric generator consuming 120 kg fuel/hour. Hybrid power systems based on fuel cells are promising technology for the forthcoming power generation market. A solid oxide fuel cell (SOFC) is the perfect candidate for utilizing waste heat recovery. This case deals with waste heat recovery from fuel cell exhaust using Brayton cycle as bottoming cycle for additional power production.
Technical Paper

Surface Modification of Aluminium Alloy 5083 Reinforced with Cr2O3/TiO2 by Friction Stir Process

2019-10-11
2019-28-0179
The surface properties have a vital role in the overall performance of the parts like brake shoe pad and other frame system. The mechanical and residual stress measurements of aluminium alloy 5083 were investigated on friction stir processed plates using the reinforcements of chromium oxide (Cr2O3) and titanium dioxide (TiO2) separately as well as combination of these powders. A comparative study was made to analyze the effects of reinforcements, tool type (cylindrical and threaded), parameters and the volume fraction of the reinforcements. The mechanical properties such as surface hardness and residual stress of the friction stir processed specimens were investigated. The experimental results shows that there was a significant increase in surface hardness (118 HRC) as well as a decrease in residual stress compare to the base metal. This study also reveals that the threaded tool with a reinforcement of Cr2O3 and TiO2 reflected better mechanical properties than the cylindrical tool.
Technical Paper

Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0146
In Additive manufacturing, Direct Metal Laser Sintering (DMLS) is a rapid manufacturing technique used for manufacturing of functional component. Finely powered metal is melted by using high-energy fiber laser, by Island principle strategy that produces mechanically and thermally stable metallic component with reduced stresses, thermal gradients and at high precision. Inconel is an austenitic chromium nickel-based superalloy often used in the applications which require high strength and temperature resistant. It can retain its properties at high temperature. An attempt is made to examine the effect of laser shot peening (LSP) on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. The surface roughness of the material has been increased due to the effect of laser shock pulse and ablative nature. Macro hardness increased to 13% on the surface.
Technical Paper

Study of NOx Reduction Efficiency in NSR and NSR-SCR Combined Systems

2019-10-11
2019-28-0087
The present study was carried out to analyze the catalytic action of K2O-Al2O3 in NOx Storage and Reduction (NSR) monolith catalyst and Fe2O3-TiO2 in Selective Catalytic Reduction (SCR) monolith catalyst. The core objective of this investigation is to determine the maximum percentage of Oxides of Nitrogen (NOx) reduction in NSR and NSR-SCR combined system with respect to engine exhaust gas temperature and compares the results with the results of the conventional mode of operation. To accomplish this task monolith ceramic bricks were coated with K2O-Al2O3 (NSR) and Fe2O3-TiO2 (SCR) catalyst and were placed in different configurations inside the catalytic chamber. Several trials were attempted to get the optimal operating temperature that has a maximum NOx removal efficiency when successively connecting a single NSR catalyst and the combined NSR-SCR double bed catalyst. Single NSR monolith at 320 °C, showed the best NOx conversion rate of 74%.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
Technical Paper

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

2019-10-11
2019-28-0061
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function.
Technical Paper

Optimization of GENSET Engine for CPCB- II Norms using Cost Effective Techniques

2013-11-27
2013-01-2838
The major challenge that is faced by most of the engine manufacturers nowadays is to meet the stringent emission norms with least modification in the engine design. In achieving the emission norms simplicity of the design has to be maintained as far as possible by optimizing the available emission control techniques. This paper deals with such optimal technique with reduced cost and up gradation of the engine from CPCB I to CPCB II in minimum time with minimum design changes. This difficult task is achieved by adopting direct continuous EGR and intercooler with appropriate injection timing and optimizing the fuel injection pump in a cost effective manner. The experiment is carried out on 2.86 litre turbocharged engine giving power output 44.5 kW @1500 rpm. In order to achieve the NOx emission norms LLR FIP is used, to retard the injection timing at part loads to reduce the in-cylinder temperature.
Technical Paper

Numerical Study of Effect of Material and Orientation on Strength of Side Door Intrusion Beam

2019-10-11
2019-28-0039
Nowadays more and more people are concerned about the safety rating of their vehicle. The safety rating depends on the ability of the car to minimize the injury to the occupants post-crash. Crashworthiness of the vehicle is determined by carrying out various tests such as static and dynamic tests. Side crashes are one of the leading causes of fatal injury following front crashes. Side door strength is dependent on the door components such as latch and striker, hinge, door beam etc. Lateral stiffness is contributed significantly by the side door beam in the door structure. The side door beam limits the side intrusion into passenger compartment. This paper emphasizes the effect of intrusion beam materials and orientation in the side door strength with a numerical approach using ANSYS tool. These factors affect the strength and weight of the door. The simulation study with respect to door design is cost-effective and time-saving.
Technical Paper

Noise Absorption Behavior of Aluminum Honeycomb Composite

2020-09-25
2020-28-0453
Natural fibers are one of the major ways to improve environmental pollution. In this study experimental investigation and simulation of honeycomb filled with cotton fabric, wood dust and polyurethane were carried out. This study determines the potential use of cotton fabric, wood dust as good sound absorbers. Automotive industries are looking forward to materials that have good acoustic properties, lightweight, strong and economical. This study provides a better understanding of sound-absorbing material with other mechanical properties. With simulation and experimental results, validation of works provides a wider industrial application for the interior of automotive industries including marine, aviation, railway industry and many more.
Technical Paper

Modeling and Analysis of Motorcycle Assembly for Dynamic Investigation

2023-11-10
2023-28-0117
“The purpose of this study is to explore the structural behavior of motorcycle frames that are fabricated from metals such as steel and aluminum, and that are welded together to generate beams. The components of the wheel, handlebar, and saddle are assembled together to form the chassis of the bicycle. For the purpose of determining modal characteristics such natural frequencies and mode shapes, two different analytical approaches, namely finite element analysis (FEA) and experimental modal analysis (EMA), were utilized. The framework of the chassis was design in 3D using CAD software to carry out the FEA, and after specifying the meshing type and material parameters, normal mode analysis was carried out. To contrast modal characteristics with FEA results, EMA utilized impact hammer testing with a roving accelerometer approach.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Investigations on Computational Meshing Techniques of FSAE Space Frame Chassis

2020-09-02
2020-01-5081
The FSAE is a world-renowned competition, in which students from across the globe compete against each other. The chassis is the main framework of the car, which is inherently responsible for accommodating all the components. The chassis is broadly classified into two types—monocoque and spaceframe. The FSAE chassis is of spaceframe type. The chassis also provides structural rigidity to the body of the car. It was observed through literature study that very minimal amount of research has been done on analyzing and validating the chassis by applying the different meshing techniques, namely 1D, 2D, and 3D. The mesh quality is very essential to obtain precise results and hence, effective methods for creating the mesh have been dealt with in this article. This study is on new investigations on different meshing techniques that can be implemented on an FSAE chassis.
Technical Paper

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

2019-10-11
2019-28-0152
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal.
Technical Paper

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
X