Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Technical Paper

Virtual Exhaust Line for Model-based Diesel Aftertreatment Development

2010-04-12
2010-01-0888
A virtual diesel aftertreatment exhaust line is presented comprising DOC, DPF, SCR models and a unique Ammonia Oxidation catalyst model. All models are one dimensional models based on first principles. These models offer an attractive compromise between speed, accuracy and complexity for a variety of model applications: off-line simulation, control strategy development, Hardware in the Loop applications and model-based calibration. The implemented models are fast and suitable for real-time applications. Use of these virtual exhaust line models in a product development process has the potential of saving time and resources. The aftertreatment models are fitted based on specifically designed engine dynamometer experiments, which can be performed in a limited time frame. The effective test time required on a validated test setup is estimated on the order of 12 days in total. Specifically developed software tools facilitate the model fit process.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Technical Paper

Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine

2018-04-03
2018-01-0254
The Reactivity Controlled Compression Ignition concept for dual-fuel engines has multiple challenges of which some can be overcome using Variable Valve Actuation approaches. For various fuel combinations, the engine research community has shown that running dual-fuel engines in RCCI mode, improves thermal efficiency and results in ultra-low engine-out nitrous oxides and soot. However, stable RCCI combustion is limited to a certain load range, depending on available hardware. At low loads, the combustion efficiency can drop significantly, whereas at high loads, the maximum in-cylinder pressure can easily exceed the engine design limit. In this paper, three VVA measures to increase load range, improve combustion efficiency, and perform thermal management are presented. Simulation results are used to demonstrate the potential of these VVA measures for a heavy-duty engine running on natural gas and diesel.
Technical Paper

Validation of a Reduced Chemical Mechanism Coupled to CFD Model in a 2-Stroke HCCI Engine

2015-04-14
2015-01-0392
Homogeneous Charge Compression Ignition (HCCI) combustion technology has demonstrated a profound potential to decrease both emissions and fuel consumption. In this way, the significance of the 2-stroke HCCI engine has been underestimated as it can provide more power stroke in comparison to a 4-stroke engine. Moreover, the mass of trapped residual gases is much larger in a 2-stroke engine, causing higher initial charge temperatures, which leads to easier auto-ignition. For controlling 2-stroke HCCI engines, it is vital to find optimized simulation approaches of HCCI combustion with a focus on ignition timing. In this study, a Computational Fluid Dynamic (CFD) model for a 2-stroke gasoline engine was developed coupled to a semi-detailed chemical mechanism of iso-octane to investigate the simulation capability of the considered chemical mechanism and the effects of different simulation parameters such as the turbulence model, grid density and time step size.
Journal Article

Validation of Longer and Heavier Vehicle Combination Simulation Models

2013-09-24
2013-01-2369
This paper discusses the development and subsequent validation process of generic multi-body models for commercial vehicle combinations. The model is intended for performance assessment and improving of current and future combinations for the European road network. A second goal is to employ the model for the development of driver support systems and active steering strategies for both low speed manoeuvrability and high speed stability. The model is developed in SimMechanics, which is part of the MATLAB/Simulink software. Due to its modularity, one can quickly modify the model to the desired configuration and dimensions; therefore various multi articulation vehicle models can be created. The paper further illustrates the simplified and generic modelling methods used to build particular components such as chassis, tyres or suspension in the multibody domain.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Validation of Control-Oriented Heavy Duty Diesel Engine Models for Non-Standard Ambient Conditions

2019-04-02
2019-01-0196
Complying to both the increasingly stringent pollutant emissions as well as (future) GHG emission legislation - with increased focus on in-use real-world emissions - puts a great challenge to the engine/aftertreatment control development process. Control system complexity, calibration and validation effort has increased dramatically over the past decade. A trend that is likely to continue considering the next steps in emission and GHG emission legislation. Control-oriented engine models are valuable tools for efficient development of engine monitoring and control systems. Furthermore, these (predictive) engine models are more and more used as part of control algorithms to ensure legislation compliant and optimized performance over the system lifetime. For these engine models, it is essential that simulation and prediction of system variables during non-nominal engine operation, such as non-standard ambient conditions, is well captured.
Technical Paper

Upgrade of the Volvo Cars Aerodynamic Wind Tunnel

2007-04-16
2007-01-1043
The aerodynamic wind tunnel at Volvo Cars, known as the PVT, was recently upgraded to a moving ground wind tunnel to improve simulation quality. The moving ground simulation system consists of a 5-belt rolling road system (a centre belt and four wheel drive units). Flow simulation has also been improved by a new boundary layer control (BLC) system with a basic suction scoop, large distributed suction areas and aft belt tangential blowing. In addition, the wind tunnel main fan motor has been up-graded from 2.3 MW to 5 MW to provide a wind speed of 250 km/h in the full test section. Previously, 250 km/h was achieved only by installing inserts to reduce the test section area. The present paper provides an outline of the design features, philosophy of the new systems, aerodynamic calibration and commissioning results.
Technical Paper

Towards Ultra-Low NOx Emissions within GHG Phase 2 Constraints: Main Challenges and Technology Directions

2018-04-03
2018-01-0331
Increasing efforts to minimize global warming has led to regulation of greenhouse gas (GHG) emissions of automotive applications. The US is frontrunner regarding implementation of GHG related legislation with the introduction of GHG phase 1 and phase 2, ultimately targeting a 40% fuel consumption reduction in 2027 compared to 2010 on vehicle level. More specific, engines are required to reduce CO2 emissions by 6% compared to GHG phase 1 levels. Next to the GHG emission legislation, more stringent legislation is anticipated in the US to further reduce NOx emissions: a further 90% reduction is targeted as soon as 2024 compared to 2010 standard. Meeting these anticipated ultra-low NOx standards within the GHG phase 2 constraints on CO2 poses a great challenge. This paper presents an overview of the main challenges and key aspects regarding meeting ultra-low NOx requirements within the constraints on CO2 and N2O set by GHG phase 2 regulations.
Technical Paper

Towards Self-Learning Energy Management for Optimal PHEV Operation Around Zero Emission Zones

2022-03-29
2022-01-0734
Self-learning energy management is a promising concept, which optimizes real-world system performance by automated, on-line adaptation of control settings. In this work, the potential of self-learning capabilities related to optimization is studied for energy management in Plug-in Hybrid Electric Vehicles (PHEV). These vehicles are of great interest for the transport sector, since they combine high fuel efficiency with last mile full-electric driving. We focus on a specific use case: PHEV operation through future Zero Emission (ZE) zones of cities. As a first step towards self-learning control, we introduce a novel, adaptive supervisory controller that combines modular energy and emission management (MEEM) and deals with varying constraints and system uncertainty. This optimal control strategy is based on Pontryagin’s Minimum Principle and maximizes overall energy efficiency.
Technical Paper

Towards Model-Based Control of RCCI-CDF Mode-Switching in Dual Fuel Engines

2018-04-03
2018-01-0263
The operation of a dual fuel combustion engine using combustion mode-switching offers the benefit of higher thermal efficiency compared to single-mode operation. For various fuel combinations, the engine research community has shown that running dual fuel engines in Reactivity Controlled Compression Ignition (RCCI) mode, is a feasible way to further improve thermal efficiency compared to Conventional Dual Fuel (CDF) operation of the same engine. In RCCI combustion, also ultra-low engine-out NOx and soot emissions have been reported. Depending on available hardware, however, stable RCCI combustion is limited to a certain load range and operating conditions. Therefore, mode-switching is a promising way to implement RCCI in practice on short term. In this paper, a model-based development approach for a dual fuel mode-switching controller is presented. Simulation results demonstrate the potential of this controller for a heavy-duty engine running on natural gas and diesel.
Technical Paper

Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

2015-04-14
2015-01-1745
For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduction of two fuels with different physical and chemical properties makes the combustion process complicated and challenging to model. In this study, a multi-zone approach is applied to NG-diesel RCCI combustion in a heavy-duty engine. Auto-ignition chemistry is believed to be the key process in RCCI. Starting from a multi-zone model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the in-cylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine.
Technical Paper

The Large Shear Strain Dynamic Behavior of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material

2000-11-01
2000-01-SC17
The large strain dynamic behavior of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behavior was characterized using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behavior was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behavior of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Technical Paper

The Climatic-Altitude Chamber as Development and Validation Tool

2010-04-12
2010-01-1294
Two major trends can be identified for powertrain control in the next decade. The legislation will more and more focus on in-use emissions. Together with the global trend to reduce the CO₂ emissions, this will lead to an integral drive train approach. To develop and validate this integral drive train approach, the need for a new chapter in powertrain testing arises. The climatic-altitude chamber, suited for heavy vehicles, serves a wide variety of testing needs. Ambient temperature can be controlled between -45°C and +55°C and ambient pressure can be reduced up to a level found at an altitude to 4000 meters. The chamber's dynamometers enable transient testing of heavy-duty engines and vehicles and the chamber is equipped with a comprehensive array of emission measurement capabilities, working under extreme conditions.
Technical Paper

Testing of a Long Haul Demonstrator Vehicle with a Waste Heat Recovery System on Public Road

2016-09-27
2016-01-8057
This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Journal Article

Steady-State and Transient Operations of a Euro VI 3.0L HD Diesel Engine with Innovative Model-Based and Pressure-Based Combustion Control Techniques

2017-03-28
2017-01-0695
In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
X