Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation Tests for a Fast Response Flame Ionisation Detector for In-Cylinder Sampling Near the Spark Plug

1996-05-01
961201
The air/fuel ratio (AFR) is a key contributor to both the performance and emissions of an automotive engine. Its variation between cylinders - and between engine cycles - is of particular importance, especially during throttle transients. This paper explores the use of a fast flame ionisation detector (FFID) to quantify these rapid changes of in-cylinder composition in the vicinity of the spark gap. While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. Others have used the FFID for this purpose, but the planned test conditions placed special demands on the instrument. These made it prudent to explore the limits of its operating envelope and to validate the experimental technique. For in-cylinder sampling, the instrument must always be insensitive to the large pressure changes over the engine cycle. With the wide range of engine loads of interest here, this constraint becomes even more crucial.
Technical Paper

The Effects of Multirow Nozzles on Diesel Combustion

2003-03-03
2003-01-0701
In a diesel engine, the combustion and emissions formation are governed by the spray formation and mixing processes. To meet the stringent emission legislations of the future, which will demand substantial reductions of NOX and particulate emissions from diesel engines, the spray and mixing processes play a major roll. Different fuel injection systems and injection strategies have been developed to achieve better performance and lower emissions from the diesel engine almost without investigating the influence of the injector nozzle orifices. A reduction in the nozzle orifice diameter is important for an increased mixing rate and formation of smaller droplets which is beneficial from emissions and fuel consumption point of view, as long as the local air-to-fuel ratio (AFR) is kept at a sufficiently lean level.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

Spark Spectroscopy for Spark Ignition Engine Diagnostics

1995-02-01
950164
The light emissions from a spark discharge were observed by inserting a fibre optic cable through the centre electrode of a spark plug, to investigate the possibility of determining the fuel-air ratio in the spark gap at ignition with spectroscopy. The total broadband light emission from the spark and the light emission centred at 385 nm from the cyanogen radical (chemical formula CN), were observed for varied ϕ and residual gas concentrations. Additionally, the spark breakdown voltage, Vs, was monitored for the experiments. All light emissions were observed to be dependent on Vs, which is influenced by mixture composition, temperature and pressure. With a spark gap size of 0.7 mm, the CN emission shows promise for evaluation of the cyclical variation of ϕ for 0.9 < ϕ <1.1.
Technical Paper

Performance and Emissions of a Natural Gas-Fueled 16 Valve DOHC Four-Cylinder Engine

1993-03-01
930380
The increasing use of natural gas as a vehicle fuel has generated considerable research activity to characterize the performance and emissions of engines utilizing this fuel. However, virtually all of the results reported have been for pushrod OHV spark ignition engines or SI conversions of heavy-duty diesel engines. Because of the pressure to improve fuel economy imposed by CAFE requirements, passenger cars are increasingly tending toward high specific output, small displacement engines. These engines employ such features as four valves per cylinder and centrally located spark plugs which give them a different dependence on operating variables than traditional pushrod OHV engines. In this study, experiments were carried out with a two-liter four-cylinder Nissan SR20DE engine representative of modern design practice. The engine was operated on gasoline and natural gas at six different loads and three different speeds. Some tests were also done with isooctane.
Technical Paper

Multi-Output Control of a Heavy Duty HCCI Engine Using Variable Valve Actuation and Model Predictive Control

2006-04-03
2006-01-0873
Autoignition of a homogeneous mixture is very sensitive to operating conditions, therefore fast control is necessary for reliable operation. There exists several means to control the combustion phasing of an Homogeneous Charge Compression Ignition (HCCI) engine, but most of the presented controlled HCCI result has been performed with single-input single-output controllers. In order to fully operate an HCCI engine several output variables need to be controlled simultaneously, for example, load, combustion phasing, cylinder pressure and emissions. As these output variables have an effect on each other, the controller should be of a structure which includes the cross-couplings between the output variables. A Model Predictive Control (MPC) controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure.
Technical Paper

Modelling and Optimization of Plug Flow Mufflers in Emission Control Systems

2017-06-05
2017-01-1782
Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
Technical Paper

Model Identification and Analysis of a High Performance Hydrostatic Actuation System

2000-09-11
2000-01-2619
A hydrostatic actuation system referred to as the Electro Hydraulic Actuator (EHA) has been designed and prototyped. In this paper, a mathematical model of the EHA is reviewed and analyzed. This theoretical analysis is supported by open-loop experimental results that indicate the presence of nonlinearities but at a degree that is considerably less than that of conventional hydraulic systems with servo-valves. The behavior of the system can be approximated as piece-wise linear with the damping ratio and natural frequency changing according to a piece-wise operating region. The EHA model is used in conjunction with experimentation and numerical optimization for quantifying the influence of unknown parameters in this system. A parametric model for the EHA is subsequently proposed and validated.
Technical Paper

Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR

2006-04-03
2006-01-0075
The possibilities for extending the range of engine loads in which soot and NOx emissions can be minimised by using low temperature combustion in conjunction with high levels of EGR was investigated in a series of experiments with a single cylinder research engine. The results show that very low levels of both soot and NOx emissions can be achieved at engine loads up to 50 % by reducing the compression ratio to 14 and applying high levels of EGR (up to approximately 60 %). Unfortunately, the low temperature combustion is accompanied by increases in fuel consumption and emissions of both HC and CO. However, these drawbacks can be reduced by advancing the injection timing. The research engine was a 2 litre direct injected (DI), supercharged, heavy duty, single cylinder diesel engine with a geometry based on Volvo's 12 litre engine, and the amount of EGR was increased by adjusting the exhaust back pressure while keeping the charge air pressure constant.
Technical Paper

Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR

2005-10-24
2005-01-3836
The objective of the study presented here was to examine the possibility of simultaneously reducing soot and nitrogen oxide (NOx) emissions from a heavy duty diesel engine, using very high levels of EGR (exhaust gas recirculation). The investigation was carried out using a 2 litre DI single cylinder diesel engine. Two different EGR strategies were examined. One entailed maintaining a constant charge air pressure with a varied exhaust back pressure in order to change the amount of EGR. In the other strategy a constant pressure difference was maintained over the engine, resulting in different equivalence ratios at similar EGR levels. EGR levels of 60 % or more significantly reduced both soot and NOx emissions at 25 % engine load with constant charge air pressure and increasing exhaust back pressure. However, combustion under these conditions was incomplete, resulting in high emissions of carbon monoxide (CO), unburned hydrocarbons (HC) and high fuel consumption.
Technical Paper

Instantaneous In-Cylinder Hydrocarbon Concentration Measurement during the Post-Flame Period in an SI Engine

1999-10-25
1999-01-3577
Crevices in the combustion chamber are the main source of hydrocarbon (HC) emissions from spark ignition (SI) engines fuelled by natural gas (NG). Instantaneous in-cylinder and engine exhaust port HC concentrations were measured simultaneously using a Cambustion HFR400 fast response flame ionization detector (FRFID) concentrated on the post-flame period. The raw data was reconstructed to account for variation in the FFRID sample transit time and time constant due to fluctuating in-cylinder pressure. HC concentration development during the post-flame period is discussed. Comparison is made of the post-flame in-cylinder and exhaust port HC concentrations under different engine operating conditions, which gives a better understanding of the mechanism by which HC emissions form from crevices in SI engines.
Technical Paper

In-Cylinder Measurement of Temperature and Soot Concentration Using the Two-Color Method

1995-02-01
950848
Optical fiber probes were used to measure the soot temperature and estimate the soot concentration inside the cylinder of a DI diesel engine. The probes were mounted at various locations on the head of the test engine, and the measurements were performed under different load levels. Using the two-color method, the variations in temperature and soot mass concentration during the combustion process were examined with temporal and spatial resolution. It was observed that soot formation is rapid and is associated with heterogeneity in the early stage of combustion. Moreover, the soot formation mechanism seems to be independent of the engine load. In contrast, soot oxidation is relatively slow. Data obtained at several different load levels are presented, and the effects of various error sources on the accuracy of the measurement technique are also investigated.
Technical Paper

Improving Flow Uniformity in a Diesel Particulate Filter System

2001-05-07
2001-01-1944
In this study, a simulation-based flow optimization of the diesel particulate filter (DPF) system is performed. The geometry and the swirl component of the inlet flow is optimized to improve flow uniformity upstream of the filter and to decrease overall pressure drop. The flow through the system is simulated with Fluent computational fluid dynamics (CFD) software from Fluent Inc. The wall-flow filter is modeled with an equivalent porous material. This study only investigates the clean flow. The DPF system is composed of three parts: the inlet diffuser, the filter and the outlet nozzle. In the original system a linear cone joins the inlet and outlet pipes to the cylindrical filter. Due to the large opening angle of this cone, flow separates and creates a recirculation zone between the inlet and the filter. The flow pattern reveals that a large area of the filter is not used: More than 88% of the air flow passes through less that 53% of the area.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

Experiments into the Flame Kernel Development in High Swirl Production Spark Ignition Engines

1999-10-25
1999-01-3544
The early flame kernel development period has a strong influence on the ultimate performance and emission characteristics of spark ignition engines. The fibre-optic instrumented spark plug, FOSP, is a tool used to characterise the early flame kernel development period without the need to modify production engines. Simultaneous in-cylinder pressure, fibre-optic spark plug and secondary ignition system voltage measurements have been made in the GM 2.8 L and the high swirl 3.1 L production engines modified to run on a single cylinder. The secondary ignition system voltages indicate that restrikes are occurring and that spark anemometry is a promising tool to extract information about the flow near the spark plug at the time of ignition. Further development of the technique is, however, required.
Technical Paper

Exhaust Emission and Energy Consumption Effects from Hydrogen Supplementation of Natural Gas

1995-10-01
952497
An experiment was conducted to evaluate the efficiency and emissions of an engine fuelled with a mixture of natural gas and approximately 15% hydrogen by volume. This mixture, called Hythane™, was compared with natural gas fuel using engine efficiency and engine-out emissions at various engine operating conditions as the basis of comparison. Throughout most of the experiment, fuel mixtures were slightly rich of stoichiometry. It was found that at low engine loads, using the same spark timing, engine efficiency increased under HythaneTM fuelling but at higher engine loads, natural gas and Hythane™ had the same efficiency. At low engine speed and load conditions with the same spark timing, engine-out total hydrocarbon (THC) emissions were lower for Hythane™ fuelling. When compared on a carbon specific basis, however, natural gas hydrocarbon emissions were lower. At some test conditions, engine-out carbon monoxide (CO) emissions were lower under Hythane™.
Technical Paper

Evaluation of the Hydrogen-Fueled Rotary Engine for Hybrid Vehicle Applications

1996-02-01
960232
The hydrogen-fueled engine has been identified as a viable power unit for ultra-low emission senes-hybrid vehicles The absence of carbon in hydrogen fuel eliminates exhaust emissions of CO, CO2, and hydrocarbons, with the exception of small contributions from the combustion of lubricating oil Thus, the only regulated emission of a hydrogen-fueled engine is NOx, and the engine may be optimized to minimize NOx since the usual constraint of the NOx -hydrocarbon trade-off is not applicable Hydrogen-fueled homogeneous charge piston engines have, however, generally suffered from a variety of combustion difficulties, most notably a proclivity to ignition on hot surfaces such as exhaust valves, spark plug electrodes and deposits on combustion chamber walls The Wankel engine is particularly well suited to the use of hydrogen fuel, since its design minimizes most of the combustion difficulties In order to evaluate the possibilities offered by the hydrogen fueled rotary engine, dynamometer tests were conducted with a small (2 2kW) Wankel engine fueled with hydrogen Preliminary results show an absence of the combustion difficulties present with hydrogen-fueled homogenous charge piston engines The engine was operated unthrottled and power output was controlled by quality governing, i.e. by varying the fuel-air equivalence ratio on the lean side of stoichiometric The ability to operate with quality governing is made possible by the wide flammability limits of hydrogen-air mixtures NOx emissions are on the order of 5 ppm for power outputs up to 70% of the maximum attainable on hydrogen fuel Thus, by operating with very lean mixtures, which effectively derates the engine, very low NOx emissions can be achieved Since the rotary engine has a characteristically high power to weight ratio and a small volume per unit power compared to the piston engine, operating a rotary engine on hydrogen and derating the power output could yield an engine with extremely low emissions which still has weight and volume characteristics comparable to a gasoline-fueled piston engine Finally, since engine weight and volume affect vehicle design, and consequently in-use vehicle power requirements, those factors, as well as engine efficiency, must be taken into account in evaluating overall hybnd vehicle efficiency
Technical Paper

Evaluation of Different Natural Gas Fueling Strategies During Throttle Transients

1996-10-01
961985
Throttle tip-in and tip-out tests on a 2.0 litre passenger car engine were performed using four different natural gas fuelling systems an air-valve or variable restriction type mixer, a venturi type mixer, central fuel injection, and port fuel injection. The in-cylinder fuel-air equivalence ratio, ϕ, was measured using a fast response flame ionization detector sampling about 7 mm from the spark plug gap. The data reveal characteristics of each fuel system's in-cylinder fuel-air ratio response and torque response.
Technical Paper

Emissions from Compression Ignition Engines with Animal-Fat-Derived Biodiesel Fuels

2014-04-01
2014-01-1600
Biodiesel and other renewable fuels are of interest due to their impact on energy supplies as well as their potential for carbon emissions reductions. Waste animal fats from meat processing facilities, which would otherwise be sent to landfill, have been proposed as a feedstock for biodiesel production. Emissions from biodiesel fuels derived from vegetable oils have undergone intense study, but there remains a lack of data describing the emissions implications of using animal fats as a biodiesel feedstock. In this study, emissions of NOx, unburned hydrocarbons and particulate matter from a compression ignition engine were examined. The particulate matter emissions were characterized using gravimetric analysis, elemental carbon analysis and transmission electron microscopy. The emissions from an animal fat derived B20 blend were compared to those from petroleum diesel and a soy derived B20 blend.
Technical Paper

Effects on Combustion by Using Kerosene or MK1 Diesel

2007-01-23
2007-01-0002
Because of coming emission legislation emissions of nitrogen oxides and particular matter (PM) have to be substantially decreased. Several new concepts for low-emission engines have been proposed such as different variants on the HCCI engine but also engines with exhaust aftertreatment to reduce exhaust emissions. It is not only the engine design that influences emissions but also the fuel that is used. This study compares kerosene fuel with commercial diesel fuel. Kerosene fuel has considerable market availability since it is used in the aviation transport sector. Therefore it is possible to supply the land-based transportation sector with this fuel in relatively large quantities. Kerosene is a fuel with lower cetane number than diesel fuel, thus giving a longer ignition delay, making it viable for lower emissions since the longer ignition delay gives a longer time for the fuel to mix with the in-cylinder gas prior to combustion onset.
X