Refine Your Search

Topic

Author

Search Results

Technical Paper

Utilizing FAME as a Cetane Number Improver for a Light-duty Diesel Engine

2014-04-01
2014-01-1392
As the petroleum depletion, some of this demand will probably have to be met by increasing the production of diesel fuels from heavy oil or unconventional oil in the near future. Such fuels may inevitably have a lower cetane number (CN) with a higher concentration of aromatic components. The objective of the present research is to identify the effects of a typical biodiesel fuel as a CN improver for a light-duty diesel engine for passenger cars. Our previous study indicates that methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many biodiesel types, can reduce soot and NOx emissions simultaneously by optimizing performance under exhaust gas recirculation (EGR) when used as a diesel fuel additive. In addition, it was found that MO tends to reduce the ignition delay. We employed a 2.2 L passenger car DI diesel engine complying with the Euro 4 emissions regulation.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

Unsteady Three-Dimensional Computational Experiments of the Single-Point Auto-Ignition Engine Based on Semispherical Supermulti-Jets Colliding with Pulse for Automobiles

2014-10-13
2014-01-2641
Supercomputer simulations substantiate a high potential of the new compressive combustion principle based on supermulti-jets colliding with pulse, which was previously proposed by us and can maintain high compression ratio for various air-fuel ratios. An original governing equation extended from the stochastic Navier-Stokes equation lying between the Boltzmann and Langevin equations is proposed and the numerical methodology based on the multi-level formulation proposed previously by us is included. For capturing instability phenomena, this approach is better than direct numerical simulation (DNS) and large eddy simulation (LES). A simple two-step chemical reaction model modified for gasoline is used. A small engine having a semispherical distribution of seventeen jets pulsed is examined here. Pulse can be generated by a rotary plate valve, while a piston of a short stroke of about 65mm is also included.
Technical Paper

Two Small Prototype Engines Developed based on Pulsed Supermulti-Jets Colliding: Having a Potential of Thermal Efficiency Over 60% with Satisfactory Strength of Structure

2014-11-11
2014-32-0099
In our previous reports based on computations and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% even for small combustion chambers having less than 100 cc. This can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center. We originally developed two small prototype engine systems for gasoline. First one with one rotary valve for pulsating intake flow and sixteen nozzles of jets colliding has no pistons. Next, we developed the second one having a strongly-asymmetric double piston system with the supermulti-jets colliding, although there are no poppet valves. The second prototype engine can vary point-compression strength due to the supermulti-jets and homogeneous compression level due to piston, by changing phase and size of two gears.
Technical Paper

Two Prototype Engines with Colliding and Compression of Pulsed Supermulti-Jets through a Focusing Process, Leading to Nearly Complete Air Insulation and Relatively Silent High Compression for Automobiles, Motorcycles, Aircrafts, and Rockets

2020-04-14
2020-01-0837
We have proposed the engine featuring a new compressive combustion principle based on pulsed supermulti-jets colliding through a focusing process in which the jets are injected from the chamber walls to the chamber center. This principle has the potential for achieving relatively silent high compression around the chamber center because autoignition occurs far from the chamber walls and also for stabilizing ignition due to this plug-less approach without heat loss on mechanical plugs including compulsory plasma ignition systems. Then, burned high temperature gas is encased by nearly complete air insulation, because the compressive flow shrinking in focusing process gets over expansion flow generated by combustion.
Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
Technical Paper

The Control of Diesel Emissions by Supercharging and Varying Fuel-injection Parameters

1992-02-01
920117
A study has been made of an automotive direct injection diesel engine designed to reduce exhaust emissions, particularly NOx and particulates, without performance deterioration. Special emphasis has been placed on air-fuel mixing conditions controlled by the fuel injection rate, the intake swirl ratio, and the intake boost pressure. By means of increasing the injection rate, ignition delay can be shortened enough to improve particulate emissions at retarded injection timings. Enhancing the intake swirl velocity contributes to the reduction of soot emission in spite of the deterioration of NOx emission. Supercharging can favorably enhance diffusion combustion resulting in improved fuel economy for retarded injection timings and reduced emissions. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by increasing the injection rate along with retarding the injection timing. Supercharging was found to be more favorable than swirl enhancement.
Technical Paper

Study on Design and Performance Prediction Methods for Miniaturized Stirling Engine

1999-09-28
1999-01-3308
This paper shows a design and performance prediction methods for a miniaturized Stirling engine, in order to develop a small portable generator set. First, a 100 W class Stirling engine is designed and manufactured. In order to miniaturize the engine, unique type heat exchangers were applied. A regenerator was located in a displacer piston. For a piston drive mechanism, a Scotch-yoke mechanism which was useful to realize the small-size engine without any lubricating device, was adopted. Next, an analysis model for the miniaturized engine is developed to improve the engine performance efficiently. The pressure in the working space is analyzed by an isothermal analysis which takes into account a gas leakage through a piston ring and pressure loss in the heat exchangers. To estimate a shaft power, the mechanical loss and the buffer loss, which is caused by a pressure change in a crank case are considered on the analysis model.
Technical Paper

Study on Burning Velocity of LPG Fuel in a Constant Volume Combustion Chamber and an SI Engine

2010-04-12
2010-01-0614
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO₂ emission. This is because of propane (C₃H₈), n-butane (n-C₄H₁₀) and i-butane (i-C₄H₁₀), which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO₂, in the past several years, LPG vehicles have widely been used as the alternate gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase in LPG vehicles to comprehend combustion characteristics of LPG. In this study, the differences of laminar burning velocity between C₃H₈, n-C4H10, i-C₄H₁₀ and regular gasoline were evaluated experimentally with the use of a constant volume combustion chamber (CVCC).
Technical Paper

Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation

2006-11-13
2006-32-0034
To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.
Journal Article

Studies on the Effect of In-Cylinder Charge Stratifications on High Load HCCI Combustion

2016-11-08
2016-32-0010
The objective of this article is to clarify the effect of thermal and equivalence ratio stratification on Homogeneous Charge Compression Ignition (HCCI) combustion under several conditions with three-dimensional computational fluid dynamics (3D CFD). Reynolds Averaged Navier-Stokes (RANS) simulation was used to calculate in-cylinder fluid dynamics. The 3D CFD simulation is also coupled with detailed chemical reaction to calculate HCCI combustion. First, the study with a simple engine model reveals that thermal stratification is more effective for prolonged combustion duration, which is a key factor for a high load limit of HCCI combustion, than equivalence ratio stratification. Thermal stratification has two-stage combustion: the combustion propagates from hot region slowly at first and then ignites in the entire in-cylinder region. Owing to this phenomenon, thermal stratification is more effective to mitigate HCCI combustion.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

Research on Reduction of Piston Vibration by Providing Granular Dampers Inside the Lattice Structure

2023-05-08
2023-01-1149
A high compression ratio is an effective means for improving the thermal efficiency of an internal combustion engines. However, a high compression ratio leads to a rapid rise in the combustion pressure, as it causes a high impulse force. The impulse force generates vibrations and noise by spreading in the engine. Therefore, reducing the vibration of the combustion (which increases as the compression ratio increases) can improve the thermal efficiency while using the same technology. We are conducting model-based research on technologies for reducing combustion vibration by applying a granular damper to a piston. To efficiently reduce the vibration, we suppress it directly with the piston, i.e., the source of the vibration. Thus, the damping effect is maximized within a minimized countermeasure range.
Technical Paper

Relationship between Turbulent Burning Velocity and Karlovitz Number under EGR Conditions

2020-09-15
2020-01-2051
The purpose of this paper is to find a universal law to predict a turbulent burning velocity under various operating conditions and engine specifications. This paper presents the relationship between turbulent burning velocity and Karlovitz number. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine speed and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. Karlovitz number was calculated with Three Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical reaction calculation, which condition was based on the experiment. The experimental and calculation results show that turbulent burning velocity is predicted by using Karlovitz number in the engine conditions, which varies depending on engine speed, EGR rates and the designs of intake ports.
Technical Paper

Reaction Path Analysis and Modeling of NOx Reduction in a Cu-chabazite SCR Catalyst Considering Cu Redox Chemistry and Reversible Hydrolysis of Cu Sites

2020-09-15
2020-01-2181
In this study, reaction path analysis and modeling of NOx reduction phenomena by selective catalytic reduction (SCR) with NH3 over a Cu-chabazite catalyst were conducted considering changes in the valence state of Cu sites and local structure due to differences in ligands to the Cu sites. The analysis showed that in the Cu-chabazite catalyst, NOx was mainly reduced by adsorbed NH3 on divalent Cu sites accompanied by a change in valence state of Cu from divalent to monovalent. It is known that the activation energy of NOx reduction on a Cu-chabazite catalyst changes between low temperatures ≤ 200 °C and mid to high temperatures ≥ 300 °C. To express this phenomenon, a reversible hydrolysis reaction based on the difference in coordination state of hydroxyl groups (OH−) to Cu sites at low and high temperatures was introduced into the model.
Technical Paper

Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate

2021-09-05
2021-24-0073
In this study, reaction path analysis and modeling of NOx reduction phenomena by fast SCR reaction on a Cu-chabazite catalyst were conducted, considering the formation and decomposition of ammonium nitrate (NH4NO3). White crystals of NH4NO3 decompose at temperatures < 200 °C. Thus, the reaction behavior changes at 200 °C under fast SCR reaction conditions. NH4NO3 formation can occur on both Cu sites and Brønsted acid sites, which are active sites for NOx reduction in the Cu-chabazite catalyst, but it is unclear where NH4NO3 accumulates on the catalyst. Analyses using catalyst test pieces with different active sites were performed to estimate this accumulation. The results suggested that NH4NO3 accumulation does not depend on the presence of either Cu sites or Brønsted acid sites. Therefore, it is assumed that NH4NO3 can be accumulated everywhere on the catalyst, including on the zeolite framework. This phenomenon was included in the model as formation/accumulation sites S'.
Technical Paper

Predicting Exhaust Emissions in a Glow-Assisted DI Methanol Engine Using a Combustion Model Combined with Full Kinetics

1996-10-01
961935
A numerical model has been developed to predict the formation of NOx and formaldehyde in the combustion and post-combustion zones of a methanol DI engine. For this purpose, a methanol-air mixture model combined with a full kinetics model has been introduced, taking into account 39 species with their 157 related elementary reactions. Through these kinetic simulations, a concept is proposed for optimizing methanol combustion and reducing exhaust emissions.
Technical Paper

Physical Theory of the Single-Point Auto-Ignition Engine Based on Supermulti-Jets Colliding with Pulse: Leading to Thermal Efficiency over 60% at Various Engine Speeds and Loads of Automobiles

2014-10-13
2014-01-2640
This paper proposes a new compressive combustion principle for an inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve incredible thermal efficiency over 60% even for small engines having strokes shorter than 100mm, whereas eco-friendly gasoline engines for today's automobiles use less than 35% of the supplied energy for work on average. This level of efficiency can be achieved with colliding supermulti-jets that create air insulation to encase burned gas around the chamber center, thereby avoiding contact with the chamber walls, including the piston. Emphasis is also placed on the fact that higher compression results in less combustion noise because of the encasing effect. We will first show that numerical computations done for two jets colliding in line quantitatively agree with shock-tube experiment and theoretical value based on compressible fluid mechanics.
Technical Paper

Optimization of Exhaust Pipe Injection Conditions for Diesel Oxidation

2007-10-29
2007-01-3998
In a Diesel Oxidation Catalyst (DOC) and Catalyzed Soot Filter (CSF) system, the DOC is used to oxidize additional fuel injected into the cylinder and/or exhaust pipe in order to increase the CSF's inlet temperature during soot regeneration. The catalyst's hydrocarbon (HC) oxidation performance is known to be strongly affected by the HC species present and the catalyst design. However, the engine operating conditions and additive fuel supply parameters also affect the oxidation performance of DOCs, but the effects of these variables have been insufficiently examined. Therefore, in this study, the oxidation performance of a DOC was examined in experiments in which both exhaust gas recirculation (EGR) levels and exhaust pipe injection parameters were varied. The results were then analyzed and optimal conditions were identified using modeFRONTIER.
Technical Paper

Numerical Study on Iso-Octane Homogeneous Charge Compression Ignition

2003-05-19
2003-01-1820
A numerical study was carried out to investigate auto-ignition characteristics during HCCI predicted by using zero and multi-dimensional models combined with detailed kinetics including 116 chemical species and 689 elementary reactions involving iso-octane. In the simulation, homogeneous charge compression ignition of the fuel was analyzed under the same conditions as encountered in internal combustion engines. The results elucidated the combustible region and oxidation process of iso-octane with the formation and destruction of various chemical species in the cylinder.
X