Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the use of Bench Wear tests in Materials Development

1959-01-01
590065
TWO TYPES of bench wear tests employed by the General Motors Research Laboratories are described, and examples are given to illustrate the application of the tests to material development problems. It is shown that correlation of a bench test with service may be achieved even when the laboratory test conditions do not appear to duplicate service conditions exactly. It is postulated that this behaviour is related to the formation of certain types of surface films during the wearing process. Some preliminary results are given of a study of the influence of lubricant type and material composition on the formation of anti-wear films.
Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
Technical Paper

Weldability Prediction of AHSS Stackups Using Artificial Neural Network Models

2012-04-16
2012-01-0529
Typical automotive body structures use resistance spot welding for most joining purposes. New materials, such as Advanced High Strength Steels (AHSS) are increasingly used in the construction of automotive body structures to meet increasingly higher structural performance requirements while maintaining or reducing weight of the vehicle. One of the challenges for implementation of new AHSS materials is weldability assessment. Weld engineers and vehicle program teams spend significant efforts and resources in testing weldability of new sheet metal stack-ups. In this paper, we present a methodology to determine the weldability of sheet metal stack-ups using an Artificial Neural Network-based tool that learns from historical data. The paper concludes by reviewing weldability results predicted by using this tool and comparing with actual test results.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Journal Article

Vehicle and Occupant Safety Protection CAE Simulation

2010-04-12
2010-01-1319
The objective of this research is to investigate the effect of the blast load on the vehicle and occupant and identify the sensitivity of the vehicle parameters to the blast load, therefore figure out the design solution to protect the vehicle and occupant. CAE explicit commercial code, LSDYNA, is applied in this research with adopting CONWEP method for the blast load. The LSDYNA 95th percentile Hybrid III dummy model is used for occupant simulation. Seat, seat belt, and underbody and underbody armor are interested areas in the design to meet the survivability and weight target. The results show the protection can be effectively achieved through employing the new design method in three areas mentioned above.
Technical Paper

Vehicle Crashworthiness Analysis Using Numerical Methods and Experiments

1992-06-01
921075
Past studies have shown the applicability of advanced numerical methods for crashworthiness simulation. Lumped parameter (LP) modeling and finite element (FE) modeling have been demonstrated as two useful methodologies for achieving this endeavor. Experimental tests and analytical modeling using LP and FE techniques were performed on an experimental vehicle in order to evaluate the compatibility and interrelationship of the two numerical methods for crashworthiness simulation. The objective of the numerical analysis was to simulate the vehicle crashworthiness in a 0 degree, 48.6 KPH frontal impact. Additionally, a single commercial software, LS-DYNA3D, was used for both the LP and FE analysis.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

Upper Extremity Injuries Related to Air Bag Deployments

1994-03-01
940716
From our crash investigations of air bag equipped passenger cars, a subset of upper extremity injuries are presented that are related to air bag deployments. Minor hand, wrist or forearm injuries-contusions, abrasions, and sprains are not uncommonly reported. Infrequently, hand fractures have been sustained and, in isolated cases, fractures of the forearm bones or of the thumb and/or adjacent hand. The close proximity of the forearm or hand to the air bag module door is related to most of the fractures identified. Steering wheel air bag deployments can fling the hand-forearm into the instrument panel, rearview mirror or windshield as indicated by contact scuffs or tissue debris or the star burst (spider web) pattern of windshield breakage in front of the steering wheel.
Technical Paper

Understanding the Effect of Spot-Weld/Bolt Joint Distribution on the Sound Radiation from Panel Structures

2011-05-17
2011-01-1723
It is well known that sound radiation from a rectangular panel can be significantly affected by its boundary condition. However, most of the existing investigations are primarily focused on sound radiation from plates with simply supported boundary conditions. The objective of this paper is to study the effect on sound radiation of the boundary supporting conditions generally specified in the form of discrete and/or distributed restraining springs. This will have practical implications. For example, in automotive NVH design, it is of interest to understand how the sound radiation from a body panel can be affected by the number and distribution of spot-welds. It is demonstrated through numerical examples that the distribution of spot-welds can be tuned or optimized, like other conventional design parameters, to achieve maximum sound reduction.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

U.S. Automotive Corrosion Trends at 5 & 6 Years

1989-12-01
892578
In 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted surveys in the Detroit area every second year starting in 1985. The survey is a closed car parking lot survey of nineteen panels or partial panels checking for perforations, blisters and surface rust. Similar surveys have and will continue to be conducted at biyearly intervals for comparison purposes to track the results of industry wide corrosion protection “improvements”. This is a report of the results of the first three surveys. THE ACAP COMMITTEE BODY DIVISION has now completed the third in its series of biyearly surveys. It is now possible to see some very clear results of industry actions and some indication of future performance.
Technical Paper

U.S. Automotive Corrosion Trends Over the Past Decade

1995-02-01
950375
Since 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area. The purpose of these surveys is to track industry wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the five surveys conducted to date.
Technical Paper

U. S. Automotive Corrosion Trends: 1998 SAE (ACAP) Automotive Body Corrosion Survey Results

2003-03-03
2003-01-1244
The Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area since 1985. The purpose of these surveys is to track industry-wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the seven surveys conducted since 1985.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
X