Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Technical Paper

Transient Cavitating Flow Simulations Inside a 2-D VCO Nozzle Using the Space-Time CE/SE Method

2001-05-07
2001-01-1983
Cavitating flows inside a two-dimensional valve covered orifice (VCO) nozzle were simulated by using the Space-Time Conservation Element and Solution Element (CE/SE) method in conjunction with a homogeneous equilibrium cavitation model. As a validation for present model, cavitation over a NACA0015 hydrofoil was predicted and compared with previous simulation results as well as experimental observations. The model was then used to investigate the effects on internal cavitating flows of different nozzle design parameters, such as the hole size, hole aspect-ratio, hydro-erosion radius, and orifice inclination. Under different conditions, cavitating flows through fuel injectors generated hydraulic flip, supercavitation, full cavitation, and cyclical cavitation phenomena, which are commonly observed in experiments.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Technical Paper

Temperature Impact on Modeling and Control of Lean NOx Trap

2003-03-03
2003-01-1163
Gasoline Direct Injection (GDI) engine has a significant fuel economy improvement over the traditional port fuel injection engine. The tradeoff for this benefit is excessive exhaust emissions, especially NOx. Three-way-catalyst (TWC) is inefficient to treat NOx emission during lean operation. So Lean NOx Trap (LNT) is invented for NOx aftertreatment and it has both storage mode and purge mode. Research on modeling and control of LNT has been conducted, but it is still lack of the essential information on the temperature effect. This research focuses on the impact of trap temperature on LNT storage time, purge time and fuel economy. The mechanism of temperature effect on LNT is investigated at first. Then the temperature control strategy based on fuel economy improvement is proposed.
Technical Paper

Study on the Key Preload Performance Parameters of an Active Reversible Preload Seatbelt (ARPS)

2018-04-03
2018-01-1175
In order to provide an improved countermeasure for occupant protection, a new type of active reversible preload seatbelt (ARPS) is presented in this paper. The ARPS is capable of protecting occupants by reducing injuries during frontal collisions. ARPS retracts seatbelt webbing by activating an electric motor attached to the seatbelt retractor. FCW (Forward Collision Warning) and LDW (Lane Departure Warning) provide signals as a trigger to activate the electric motor to retract the seatbelt webbing, thus making the occupant restraint system work more effectively in a crash. It also helps reduce occupant’s forward movement during impact process via braking. Four important factors such as preload force, preload velocity and the length and timing of webbing retraction play influential roles in performance of the ARPS. This paper focuses on studying preload performance of ARPS under various test conditions to investigate effects of the aforementioned factors.
Technical Paper

Strategies to Gain the Loss in Power in a Military Diesel Engine Using JP-8 Instead of ULSD

2020-04-14
2020-01-0804
The Department of Defense (DOD) has adopted the use of JP-8 under the “single battlefield fuel” policy. Fuel properties of JP-8 which are different from ULSD include cetane number, density, heating value and compressibility (Bulk modulus). While JP8 has advantages compared to ULSD, related to storage, combustion and lower soot emissions, its use cause a drop in the peak power in some military diesel engines. The engines that has loss in power use the Hydraulically actuated Electronic Unit Injection (HEUI) fuel system. The paper explains in details the operation of HEUI including fuel delivery into the injector and its compression to the high injection pressure before its delivery in the combustion chamber. The effect of fuel compressibility on the volume of the fuel that is injected into the combustion chamber is explained in details.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Smart Spark Plug for Proper Combustion Timing in Gasoline Engines and Detection of Misfire and Knock

2020-04-14
2020-01-0790
Internal combustion engines are required to achieve production goals of better fuel economy, improved fuel economy and reduced emissions in order to meet the current and future stringent standards. To achieve these goals, it is essential to control the combustion process using an in-cylinder combustion sensor and a system that produces a feedback signal to the ECU. This paper presents a system based on combustion ionization that includes a newly developed smart spark plug capable of sensing the whole combustion process. A unique feature of the smart spark plug system is its ability to sense the early stages of combustion and produce a complete ion current signal that accurately identifies and can be used for the control of the start of combustion.
Technical Paper

Simulation-Based Cold-Start Control Strategy for a Diesel Engine with Common Rail Fuel System at Different Ambient Temperatures

2007-04-16
2007-01-0933
A new tool has been used to arrive at appropriate split injection strategy for reducing the cranking period during the cold start of a multi-cylinder engine at decreasing ambient temperatures. The concept behind this tool is that the combination of different injection parameters that produce the highest IMEP should be able to improve the cold startability of the diesel engine. In this work the following injection parameters were considered: 1) injection timing, 2) split injection fraction, 3) dwell time and 4) total fuel mass injected per cycle. A commercial engine cyclic simulation code has been modified for diesel engine cycle simulation at lower ambient temperatures. The code was used to develop IMEP control maps. The maps were used to identify the parameters that would give the best IMEP. The strategies that have been identified have been validated experimentally in a multi-cylinder diesel engine equipped with a common rail fuel injection system.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Simulation and Experimental Measurement of CO2*, OH* and CH2O* Chemiluminescence from an Optical Diesel Engine Fueled with n-Heptane

2013-09-08
2013-24-0010
A means of validating numerical simulations has been developed which utilizes chemiluminescence measurements from an internal combustion engine. By incorporating OH*, CH2O* and CO2* chemiluminescence sub-mechanisms into a detailed n-heptane reaction mechanism, excited species concentration and chemiluminescence light emission were calculated. The modeled line-of-sight chemiluminescence emission allows a direct comparison of simulation results to experimentally measured chemiluminescence images obtained during combustion in an optically accessible compression ignition engine using neat n-heptane fuel. The spray model was calibrated using in-cylinder liquid penetration length Mie scattering measurements taken from the jets of the high-pressure piezo injector.
Technical Paper

Simulation and Comparison of Autoignition of Homogeneous Fuel/Air Mixtures and Sprays in Diesel Engines

2016-04-05
2016-01-0311
All previous correlations of the ignition delay (ID) period in diesel combustion show a positive activation energy, which means that shorter ID periods are achieved at higher charge temperatures. This is not the case in the autoignition of most homogeneous hydrocarbons-air mixtures where they experience the NTC (Negative Temperature Coefficient ) regime in the intermediate temperature range, from about 800 K to 1000 K). Here, the autoignition reactions slow down and longer ID periods are experienced at higher temperatures. Accordingly the global activation energy for the autoignition reactions of homogeneous mixtures should vary from positive to negative values.
Technical Paper

Simplified Elasto-Hydrodynamic Friction Model of the Cam-Tappet Contact

2003-03-03
2003-01-0985
The paper analyses the particularities of the lubricating conditions at the contact between the cam and a flat tappet in the valve train of an internal combustion engine and develops a method for the calculation of the friction force. The existing lubrication models show the predominance of the entraining speed and oil viscosity on the thickness of the oil film entrapped between cam and tappet, predicting a very small value (less than 0.1 μm) of the oil film thickness (OFT). The oil viscosity increases exponentially with pressure in the Hertzian contact, determining non-Newtonian behavior of the oil in the contact zone. Using the model developed by Greenwood and Tripp [11] for the contact of two rough surfaces and the Eyring model [2] for the oil it is shown that non-Newtonian behavior of the oil prevails and that the OFT plays a secondary role on the friction force.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
X