Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

Time Series Modeling of Terrain Profiles

2005-11-01
2005-01-3561
Every time we measure the terrain profiles we would get a different set of data due to the measuring errors and due to the fact that the linear tracks on which the measuring vehicle travels can not be exactly the same every time. However the data collected at different times from the same terrain should share the similar intrinsic properties. Hence it is natural to consider statistical modeling of the terrain profiles. In this paper we shall use the time series models with time being the distance from the starting point. We receive data from the Belgian Block and the Perryman3 testing tracks. The Belgian Block data are shown to behave like a uniformly modulated process([7]), i.e. it is the product of a deterministic function and a stationary process. The modeling of the profiles can be done by estimating the deterministic function and fit the stationary process with a well-known ARMA model. The Perryman3 data are more irregular.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

The Dimensional Model of Driver Demand: Visual-Manual Tasks

2016-04-05
2016-01-1423
Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
Journal Article

The Dimensional Model of Driver Demand: Extension to Auditory-Vocal and Mixed-Mode Tasks

2016-04-05
2016-01-1427
The Dimensional Model of Driver Demand is extended to include Auditory-Vocal (i.e., pure “voice” tasks), and Mixed-Mode tasks (i.e., a combination of Auditory-Vocal mode with visual-only, or with Visual-Manual modes). The extended model was validated with data from 24 participants using the 2014 Toyota Corolla infotainment system in a video-based surrogate driving venue. Twenty-two driver performance metrics were collected, including total eyes-off-road time (TEORT), mean single glance duration (MSGD), and proportion of long single glances (LGP). Other key metrics included response time (RT) and miss rate to a Tactile Detection Response Task (TDRT). The 22 metrics were simplified using Principal Component Analysis to two dimensions. The major dimension, explaining 60% of total variance, we interpret as the attentional effects of cognitive demand. The minor dimension, explaining 20% of total variance, we interpret as physical demand.
Technical Paper

The Development of a Model for the Study of Head Injury

1967-02-01
670923
Experiments have revealed that the brain of the experimental animal behaves elastically in response to dynamic forces in situ. The response of the skull of the human cadaver has been investigated by means of static load-deflection tests and impact and mechanical impedance tests. This information has been used to construct a two-dimensional head model consisting of a polyester resin shell reinforced with fiberglas with plexiglass sides; a clear silicone gel brain; and spinal cord simulated by a plexiglass tube containing silicone gel supported by a piston-spring assembly. Several frames taken from motion pictures recorded at 7,000 frames/sec. show how pressure gradients in the model are displayed by observing the growth and location of bubbles during impact.
Technical Paper

The Determination of Response Characteristics of the Head with Emphasis on Mechanical Impedance Techniques

1967-02-01
670911
Certain physical characteristics such as apparent mass and stiffness influence the dynamic response of the head and thereby the degree of trauma suffered from impact with another body. These characteristics are a function of frequency and can be determined by mechanical impedance measurement techniques. A force generator was attached directly to the skull and the force input and resulting motion at the point of attachment were measured respectively by a force and acceleration transducer. The magnitude as well as phase angle between these two vectors were measured over the frequency range from 5 to 5,000 Hz. A plot of the ratio of force and acceleration vs. frequency and phase angle vs. frequency on a nomograph reveal that both the apparent mass and stiffness of the head vary markedly from static values, and with location.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Technical Paper

Testing the Validity and Limitations of the Severity Index

1970-02-01
700901
The head acceleration pulses obtained from monkey concussion, cadaver skull fracture (t = 0.002 sec), and football helmet experiments (0.006< t< 0.011 sec) have been subjected to injury hazard assessment by the Severity Index method. Although not directly applicable, the method correlates well with degree of monkey concussion. The range of Severity Indices for acceleration pulses obtained during impact to nine cadavers, all of which produced a linear fracture, was 540-1760 (1000 is danger to life) with a median value of 910. The helmet experiments showed good correlation between the Severity Index and the Wayne State University tolerance curve. These helmet tests also showed that a kinematics chart with curves of velocity change, stopping distance, average head acceleration, and time, with a superimposed Wayne State tolerance curve, can be useful in injury assessment.
Technical Paper

Terrain Roughness Standards for Mobility and Ultra-Reliability Prediction

2003-03-03
2003-01-0218
The U.S. Army uses the root mean squared of elevation, or the RMSE standard for characterizing road/off-road roughness descriptions. This standard has often appeared in contracts as a performance requirement for the vehicle system. One important application of the standard is describing the testing environment for the vehicle. A physical test, which uses the standard, is the 30,000 mile endurance test. More recently, another metric has been used, the power spectral density (PSD) of road roughness. The international standard for road roughness is known as the International Roughness Index (IRI), and all road construction projects in the U.S. are based on this, as well as Department of Transportation analyses. This paper will analyze the different standards by comparing and contrasting the various aspects of each. Depending on the standard and metrics chosen, the simulation results will have different correlations with actual test.
Technical Paper

Temperature Impact on Modeling and Control of Lean NOx Trap

2003-03-03
2003-01-1163
Gasoline Direct Injection (GDI) engine has a significant fuel economy improvement over the traditional port fuel injection engine. The tradeoff for this benefit is excessive exhaust emissions, especially NOx. Three-way-catalyst (TWC) is inefficient to treat NOx emission during lean operation. So Lean NOx Trap (LNT) is invented for NOx aftertreatment and it has both storage mode and purge mode. Research on modeling and control of LNT has been conducted, but it is still lack of the essential information on the temperature effect. This research focuses on the impact of trap temperature on LNT storage time, purge time and fuel economy. The mechanism of temperature effect on LNT is investigated at first. Then the temperature control strategy based on fuel economy improvement is proposed.
Technical Paper

Study of Potential Mechanisms of Traumatic Rupture of the Aorta Using InSitu Experiments

2006-11-06
2006-22-0011
Traumatic rupture of the aorta (TRA) is an important transportation-related injury. This study investigated TRA mechanisms using in situ human cadaver experiments. Four quasi-static tests and one dynamic test were performed. The quasi-static experiments were conducted by perturbing the mediastinal structures of the cadavers. The mechanisms investigated included anterior, superior, and lateral displacement of the heart and aortic arch. The resulting injuries ranged from partial tears to complete transections. All injuries occurred within the peri-isthmic region. Intimal tears were associated with the primary injuries. The average failure load and stretch were 148 N and 30 percent for the quasi-static tests. This study illustrates that TRA can result from appropriate application of nominal levels of longitudinal load and tension. The results demonstrate that intraluminal pressure and whole-body acceleration are not required for TRA to occur.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Journal Article

Static and Dynamic Instabilities of Electrostatic Actuated MEMS Devices

2008-04-14
2008-01-0915
Fast and accurate characterization of stability regions and operational range with respect to pull-in voltage and displacement is critical in the design and development of MEMS resonators and switches. This paper presents a mathematical and computational procedure for modeling and analysis of static and dynamic instabilities of capacitive microdevices employing resonant microbeams. The mathematical model consists of a nonlinear microbeam under distributed electrostatic actuation and squeeze film damping. The coupled system is described by the nonlinear beam equation and a modified compressible Reynolds equation to account for the rarefied gas in the narrow gap between the microbeam and substrate. The Differential Quadrature Method (DQM) is used to discretize partial differential equations of motion and solve for static deflection, natural frequencies, static pull-in voltage, and quality factors for various encapsulation air pressures and applied DC voltages.
Technical Paper

Static Deformation and Volume Changes in the Human Skull

1968-02-01
680782
Three human male cadaver heads were statically loaded along anteroposterior, posterioanterior, side to side, and vertex to base lines of action, while simultaneously measuring skull deflections at four or five locations and intracranial volume changes. Volume changes due to loading along the long (A-P) axis were small and either increased or decreased, while loads transverse to the A-P axis decreased the volume. Transverse loads produced volume changes on the order of 10 times larger than those due to A-P forces. Two skulls loaded to fracture in the A-P direction, failed at 1150 and 2200 lb, respectively, into the right orbit. These magnitudes and linear fracture direction correspond to four fractures produced by impact to the frontal bone of intact cadavers in previous work.
Technical Paper

Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines

1996-10-01
961925
An experimental study was made to investigate the spray characteristics of high pressure fuel injectors for direct-injection gasoline engines. The global spray development process was visualized using two-dimensional laser Mie scattering technique. The spray atomization process was characterized by Phase Doppler particle analyzer. The transient spray development process was investigated under different fuel injection conditions as a function of the time after the fuel injection start. The effects of injector design, fuel injection pressure, injection duration, ambient pressure, and fuel property on the spray breakup and atomization characteristics were studied in details. Two clear counter-rotating recirculation zones are observed at the later stage or after the end of fuel injection inside the fuel sprays with a small momentum. The circumferential distribution of the spray from the large-angle injector is quite irregular and looks like a star with several wings projected out.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

2011-04-12
2011-01-0508
Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Technical Paper

Safety Performance of a Chemically Strengthened Windshield

1969-02-01
690485
Safety performance of an experimental windshield with a thin, chemically tempered inner pane is compared with the standard windshield and other experimental windshields. The chemically tempered windshield has a penetration velocity of 35 mph compared with 26 mph penetration velocity for the standard windshield and has lower peak head accelerations than other types used in the experiments. The windshield tested produces a bulge on impact, which decelerates the head over a long distance with low accelerations. The bulge or pocket is lined with particles that are less lacerative than the standard annealed glass.
X