Refine Your Search

Topic

Author

Search Results

Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Weight Effect on Emissions and Fuel Consumption from Diesel and Lean-Burn Natural Gas Transit Buses

2007-08-05
2007-01-3626
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
Technical Paper

The Optimization of MOP Control Strategy for a Range-Extended Electric Vehicle Based on GA

2017-10-08
2017-01-2464
The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy. Finally, a dynamic simulation model of REEV is developed in Matlab/Simulink.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Technical Paper

The Coaxial Cavity Resonator as a RF IC Engine Ignition Source

2001-03-05
2001-01-0987
The Quarter Wave Coaxial Cavity Resonator (QWCCR) plasma igniter is designed, from previous theoretical work, as an ignition source for an internal combustion engine. The present research has explored the implementation of the QWCCR into an internal combustion (IC) engine. The QWCCR design parameters of inner conductor length, loop geometry, and loop position were varied for two igniters of differing operating frequency. Variations of the QWCCR radio frequency (RF) parameters, as a function of engine geometry, were studied by placing the igniter in a combustion chamber and manually varying the crank position. Three identical igniters were fitted with dielectric inserts and the parameters were studied before and after ignition was sustained in a twin-cylinder engine. Optimal resonator geometries were determined. Radio frequency parameter invariance was found with respect to crank angle and piston distance. The first successful IC engine ignition using a QWCCR was achieved.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Journal Article

Sensitivity Analysis and Control Methodology for Linear Engine Alternator

2019-04-02
2019-01-0230
Linear engine alternator (LEA) design optimization traditionally has been difficult because each independent variable alters the motion with respect to time, and therefore alters the engine and alternator response to other governing variables. An analogy is drawn to a conventional engine with a very light flywheel, where the rotational speed effectively is not constant. However, when springs are used in conjunction with an LEA, the motion becomes more consistent and more sinusoidal with increasing spring stiffness. This avoids some attractive features, such as variable compression ratio HCCI operation, but aids in reducing cycle-to-cycle variation for conventional combustion modes. To understand the cycle-to-cycle variations, we have developed a comprehensive model of an LEA with a 1kW target power in MATLAB®/Simulink, and an LEA corresponding to that model has been operated in the laboratory.
Journal Article

Resonance of a Spring Opposed Free Piston Engine Device

2016-04-05
2016-01-0568
Recent free piston engine research reported in the literature has included development efforts for single and dual cylinder devices through both simulation and prototype operation. A single cylinder, spring opposed, oscillating linear engine and alternator (OLEA) is a suitable architecture for application as a steady state generator. Such a device could be tuned and optimized for peak efficiency and nominal power at unthrottled operation. One of the significant challenges facing researchers is startup of the engine. It could be achieved by operating the alternator in a motoring mode according to the natural system resonant frequency, effectively bouncing the translator between the spring and cylinder, increasing stroke until sufficient compression is reached to allow introduction of fuel and initiation of combustion. To study the natural resonance of the OLEA, a numeric model has been built to simulate multiple cycles of operation.
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Journal Article

Pre-design Investigation of Resonant Frequency Effects on Gas Exchange Efficiencies of a One-kW Natural-Gas Linear Engine Alternator

2020-04-14
2020-01-0488
Performance of a natural gas two-stroke engine incorporated in a 1-kW free-piston oscillating Linear Engine Alternator (LEA) - a household electricity generator - was investigated under different resonant frequencies for pre-design phase purposes. To increase the robustness, power density, and thermal efficiencies, the crank mechanism in free-piston LEA is omitted and all moving parts of the generator operate at a fixed resonant frequency. Flexure springs are the main source of the LEA’s stiffness and the mass-spring dynamics dominates the engine’s speed. The trade-off between the engine’s performance, mass-spring system limits, and power and efficiency targets versus the LEA speed is very crucial and demands a careful investigation specifically at the concept design stages to find the optimum design parameters and operating conditions. CFD modeling was performed to analyze the effects of resonant frequency on the engine’s gas exchange behavior.
Technical Paper

Potential Applications of the Stiller-Smith Mechanism in internal Combustion Engine Designs

1987-11-08
871225
With few exceptions most internal combustion engines use a slider-crank mechanism to convert reciprocating piston motion into a usable rotational output. One such exception is the Stiller-Smith Mechanism which utilizes a kinematic inversion of a Scotch yoke called an elliptic trammel. The device uses rigid connecting rods and a floating/eccentric gear train for motion conversion and force transmission. The mechanism exhibits advantages over the slider-crank for application in internal combustion engines in areas such as balancing, size, thermal efficiency, and low heat rejection. An overview of potential advantages of an engine utilizing the Stiller-Smith Mechanism is presented.
Technical Paper

PM Concentration and Size Distributions from a Heavy-duty Diesel Engine Programmed with Different Engine-out Calibrations to Meet the 2010 Emission Limits

2009-04-20
2009-01-1183
The temporary deactivation of the selective catalytic reduction (SCR) device due to malfunction requires the engine control to engage multiple engine-out calibrations. Further, it is expected that emitted particles will be different in composition, size and morphology when an engine, which meets the 2010 particulate matter (PM) gravimetric limits, is programmed with multiple maps. This study investigated the correlation between SCR-out/engine-out PM emissions from an 11-liter Volvo engine. Measurement of PM concentrations and size distributions were conducted under steady state and transient cycles. Ion Chromatograph analysis on gravimetric filters at the SCR-out has revealed the presence of sulfates. Two different PM size-distributions were generated over a single engine test mode in the accumulation mode region with the aid of a design of experiment (DOE) tool. The SCR-out PM size distributions were found to correlate with the two engine-out distributions.
Technical Paper

Numerical Simulation of a Two-Stroke Linear Engine-Alternator Combination

1999-03-01
1999-01-0921
Series hybrid electric vehicles (HEVs) require power-plants that can generate electrical energy without specifically requiring rotary input shaft motion. A small-bore working prototype of a two-stroke spark ignited linear engine-alternator combination has been designed, constructed and tested and has been found to produce as much as 316W of electrical energy. This engine consists of two opposed pistons (of 36 mm diameter) linked by a connecting rod with a permanent magnet alternator arranged on the reciprocating shaft. This paper presents the numerical modeling of the operation of the linear engine. The piston motion of the linear engine is not mechanically defined: it rather results from the balance of the in-cylinder pressures, inertia, friction, and the load applied to the shaft by the alternator, along with history effects from the previous cycle. The engine computational model combines dynamic and thermodynamic analyses.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Technical Paper

Modularity in Spark Ignition Engines: A Review of its Benefits, Implementation and Limitations

1998-10-19
982688
A conceptual understanding of modularity in internal combustion engines (defined as design, operation, and sensing on an individual cylinder basis) is presented. Three fundamental modular concepts are identified. These are dissimilar component sizing and operation, component deactivation, and direct sensing. The implementation of these concepts in spark ignition internal combustion engines is presented. Several modular approaches are reviewed with respect to breathing, fueling, power generation, and sensing. These include dissimilar orientation, geometry, and activation of multiple induction runners, partial or total disablement of valves through direct or indirect means, dissimilar fueling of individual cylinders, skipping the combustion event of one or more cylinders, deactivation of dissimilar individual cylinders or a group of cylinders, and individual cylinder gas pressure and mixture strength sensing.
Technical Paper

Misfire, Knock and NOx Mapping of a Laser Spark Ignited Single Cylinder Lean Burn Natural Gas Engine

2004-06-08
2004-01-1853
Evermore demanding market and legislative pressures require stationary lean burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. The performance and durability of spark plug ignition systems suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. Advancing the state of the art of ignition systems for these engines is critical to meeting increased performance requirements. Laser-spark ignition has shown potential to improve engine performance and ignition system durability to levels required meet or exceed projected requirements. This paper discusses testing which extends previous efforts [1] to include constant fueling knock, misfire, thermal efficiency, and NOx emissions mapping of a single cylinder lean burn natural gas engine.
Journal Article

Methodology to Determine the Fast Burn Period Inside a Heavy-Duty Diesel Engine Converted to Natural Gas Lean-Burn Spark Ignition Operation

2019-12-19
2019-01-2220
The conversion of existing diesel engines to natural-gas operation can reduce the dependence on petroleum imports and curtail engine-out emissions. A convenient way to perform such conversion is by adding a gas injector in the intake manifold and replacing the diesel fuel injector with a spark plug to initiate and control the combustion process. However, challenges may appear with respect to engine’s efficiency and emissions as natural-gas spark-ignition combustion inside a diesel combustion chamber is different to that in conventional spark ignition engines. For example, major difference is the phasing and duration of the fast burn, defined as the period in which the rate of heat release increases linearly with crank angle. This study presents a methodology to investigate the fast burn inside a diesel geometry using heat release data.
X