Refine Your Search

Topic

Author

Search Results

Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Weight Effect on Emissions and Fuel Consumption from Diesel and Lean-Burn Natural Gas Transit Buses

2007-08-05
2007-01-3626
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
Technical Paper

Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW)

2006-04-03
2006-01-1392
This paper presents on-going finite element modeling efforts of friction stir spot welding (FSSW) process using Abaqus/Explicit as a finite element solver. Three-dimensional coupled thermal-stress model was used to calculate thermo-mechanical response of FSSW process. Adaptive meshing and advection schemes, which makes it possible to maintain mesh quality under large deformations, is utilized to simulate the material flow and temperature distribution in FSSW process. The predicted overall deformation shape of the weld joint resembles that experimentally observed. Temperature and stress graphs in the radial direction as well as temperature-deformation distribution plots are presented.
Technical Paper

System Level RBDO for Military Ground Vehicles using High Performance Computing

2008-04-14
2008-01-0543
The Army continues to improve its Reliability-based Design Optimization (RBDO) process, expanding from component optimization to system optimization. We are using the massively parallel computing power of the Department of Defense (DoD) High Performance Computing (HPC) systems to simultaneously optimize multiple components which interact with each other in a mechanical system. Specifically, we have a subsystem of a military ground vehicle, consisting of more than four components and are simultaneously optimizing five components of that subsystem using RBDO methods. We do not simply optimize one component at a time, sequentially, and iterate until convergence. We actually simultaneously optimize all components together. This can be done efficiently using the parallel computing environment. We will discuss the results of this optimization, and the advantages and disadvantages of using HPC systems for this work.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Technical Paper

Speed and Power Regressions for Quality Control of Heavy Duty Vehicle Chassis Dynamometer Research

1999-03-01
1999-01-0614
When performing a transient test on a heavy-duty engine as outlined in the Code of Federal Regulations (CFR), defined regression values of engine speed, torque and power must meet specific tolerances for the test to be considered valid. Regression of actual engine feedback data against target points from a schedule defined from an engine map is performed using the method of least squares to determine the slope, intercept, coefficient of regression and standard error of the estimate. To minimize the biasing effects of time lag between actual and schedule data, shifting of the data in the time domain prior to analysis and certain point deletions are permitted. There are presently no regression criteria available for heavy duty chassis testing. This leaves facilities performing these chassis tests with no suitable guidelines to validate individual tests. This study applies the regression analysis used in engine testing to chassis testing and examines the difficulties encountered.
Technical Paper

Some Developments in DES Modeling for Engine Flow Simulation

2015-09-06
2015-24-2414
Scale-resolving turbulence modeling for engine flow simulation has constantly increased its popularity in the last decade. In contrast to classical RANS modeling, LES-like approaches are able to resolve a larger number of unsteady flow features. In principle, this capability allows to accurately predict some of the key parameters involved in the development and optimization of modern engines such as cycle-to-cycle variations in a DI engine. However, since multiple simulated engine cycles are required to extract reliable flow statistics, the spatial and temporal resolution requirements of pure LES still represent a severe limit for its wider application on realistic engine geometries. In this context, Hybrid URANS-LES methodologies can therefore become a potentially attractive option. In fact, their task is to preserve the turbulence scale-resolving in the flow core regions but at a significantly lower computational cost compared to standard LES.
Journal Article

Sensitivity Analysis and Control Methodology for Linear Engine Alternator

2019-04-02
2019-01-0230
Linear engine alternator (LEA) design optimization traditionally has been difficult because each independent variable alters the motion with respect to time, and therefore alters the engine and alternator response to other governing variables. An analogy is drawn to a conventional engine with a very light flywheel, where the rotational speed effectively is not constant. However, when springs are used in conjunction with an LEA, the motion becomes more consistent and more sinusoidal with increasing spring stiffness. This avoids some attractive features, such as variable compression ratio HCCI operation, but aids in reducing cycle-to-cycle variation for conventional combustion modes. To understand the cycle-to-cycle variations, we have developed a comprehensive model of an LEA with a 1kW target power in MATLAB®/Simulink, and an LEA corresponding to that model has been operated in the laboratory.
Technical Paper

Rotary Engines – A Concept Review

2003-10-27
2003-01-3206
The basic design of a purely rotary motion engine has potentially many advantages over the conventional piston-crank internal combustion engine. Although only one rotary engine has been successfully placed into production, rotary mechanisms still show promise in the market place. A comprehensive review of rotary engine concepts is presented with an emphasis placed on the last 30 years. Suggestions are made as to where research concentrations should be placed to improve the progress of a rotary engine.
Journal Article

Resonance of a Spring Opposed Free Piston Engine Device

2016-04-05
2016-01-0568
Recent free piston engine research reported in the literature has included development efforts for single and dual cylinder devices through both simulation and prototype operation. A single cylinder, spring opposed, oscillating linear engine and alternator (OLEA) is a suitable architecture for application as a steady state generator. Such a device could be tuned and optimized for peak efficiency and nominal power at unthrottled operation. One of the significant challenges facing researchers is startup of the engine. It could be achieved by operating the alternator in a motoring mode according to the natural system resonant frequency, effectively bouncing the translator between the spring and cylinder, increasing stroke until sufficient compression is reached to allow introduction of fuel and initiation of combustion. To study the natural resonance of the OLEA, a numeric model has been built to simulate multiple cycles of operation.
Technical Paper

Regenerative Braking of a 2015 LMP1-H Racing Car

2015-09-27
2015-01-2659
Regenerative braking coupled to small high power density engines are becoming more and more popular in motorsport applications delivering improved performances while increasing similarities and synergies in between road and track applications. Computer aided engineering (CAE) tools integrated with the telemetry data of the car are an important component of the product development. This paper presents the CAE model developed to describe the race track operation of a LMP1-H racing car covering one lap of the Le Mans circuit. The friction and regenerative braking is discussed.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Quality Assurance of Exhaust Emissions Test Data Measured Using Portable Emissions Measurement System

2005-10-24
2005-01-3799
Beginning 2007, heavy-duty engine certification would require that in-use emissions from vehicles be measured under ‘real-world’ operating conditions using on-board measurement devices. An on-board portable emissions measurement system called Mobile Emissions Measurement System (MEMS) was developed at West Virginia University (WVU) to record in-use, continuous and brake-specific emissions from heavy-duty diesel-powered vehicles. The objective of this paper is to present a preliminary development of a test data quality assurance methodology for emissions measured using the any portable emissions measurement system (PEMS). The first stage of the methodology requires ensuring the proper operation of the different sensors and transducers during data collection. The second stage is data synchronization and pre-processing. The next stage is systematic checking of possible errors from transducers and sensors.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

Neural Network-Based Diesel Engine Emissions Prediction Using In-Cylinder Combustion Pressure

1999-05-03
1999-01-1532
This paper explores the feasibility of using in-cylinder pressure-based variables to predict gaseous exhaust emissions levels from a Navistar T444 direct injection diesel engine through the use of neural networks. The networks were trained using in-cylinder pressure derived variables generated at steady state conditions over a wide speed and load test matrix. The networks were then validated on previously “unseen” real-time data obtained from the Federal Test Procedure cycle through the use of a high speed digital signal processor data acquisition system. Once fully trained, the DSP-based system developed in this work allows the real-time prediction of NOX and CO2 emissions from this engine on a cycle-by-cycle basis without requiring emissions measurement.
Technical Paper

Modularity in Spark Ignition Engines: A Review of its Benefits, Implementation and Limitations

1998-10-19
982688
A conceptual understanding of modularity in internal combustion engines (defined as design, operation, and sensing on an individual cylinder basis) is presented. Three fundamental modular concepts are identified. These are dissimilar component sizing and operation, component deactivation, and direct sensing. The implementation of these concepts in spark ignition internal combustion engines is presented. Several modular approaches are reviewed with respect to breathing, fueling, power generation, and sensing. These include dissimilar orientation, geometry, and activation of multiple induction runners, partial or total disablement of valves through direct or indirect means, dissimilar fueling of individual cylinders, skipping the combustion event of one or more cylinders, deactivation of dissimilar individual cylinders or a group of cylinders, and individual cylinder gas pressure and mixture strength sensing.
Technical Paper

Misfire, Knock and NOx Mapping of a Laser Spark Ignited Single Cylinder Lean Burn Natural Gas Engine

2004-06-08
2004-01-1853
Evermore demanding market and legislative pressures require stationary lean burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. The performance and durability of spark plug ignition systems suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. Advancing the state of the art of ignition systems for these engines is critical to meeting increased performance requirements. Laser-spark ignition has shown potential to improve engine performance and ignition system durability to levels required meet or exceed projected requirements. This paper discusses testing which extends previous efforts [1] to include constant fueling knock, misfire, thermal efficiency, and NOx emissions mapping of a single cylinder lean burn natural gas engine.
Technical Paper

Knock Prediction in Reciprocating Gas-Engines Using Detailed Chemical Kinetics

2001-03-05
2001-01-1012
Two and three-dimensional test cases were simulated using a detailed kinetic mechanism for di-methyl ether to represent methane combustion. A piston-bowl assembly for the compression and expansion strokes with combustion has been simulated at 1500 RPM. A fine grid was used for the 2-D simulations and a rather coarse grid was used for the 3-D calculations together with a k-ε subgrid-scale turbulence model and a partially stirred reactor model with three time scales. Ignition was simulated artificially by increasing the temperature at one point inside the cylinder. The results of these simulations were compared with experimental results. The simulation involved an engine with a homogeneous charge of methane as fuel. Results indicate that pressure fluctuations were captured some time after the ignition started, which indicates knock conditions.
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

2013-09-17
2013-01-2304
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
X