Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Use of CAE Technology in DENSO A/C Development

2001-03-05
2001-01-0033
In view of the shorter development period for new automobiles, we have developed a computer-aided engineering (CAE) system to aid in commensurately speedy development of automotive air conditioners. This system consists of three tools: one that calculates various design specifications instantaneously, one that enables designers to easily examine air-conditioner shape, and one that converts shape data into calculable model data to enable 3D (three-dimensional) processing. Effective use of these tools cuts air-conditioner development lead time to half that of the conventional process.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

The precipitation of biodiesel impurities at low temperature and its effect on fuel filter

2019-12-19
2019-01-2188
Biofuels are expanding continuously in global market as one of renewable options to replace fossil fuels. Biodiesel is the most commonly used biofuel that can be blended into conventional diesels in any proportion. However, higher biodiesel blends may cause problems. One of its problems is precipitation formation arise from biodiesel may clog fuel filter at low temperature. This study focuses on fuel and environment factors on biodiesel precipitation and their influence degree on fuel filter clogging. The results indicate that monoglycerides and temperature have strong correlation with precipitate weight. Moreover, quantitative effect of precipitate weight on filter clogging was clarified.
Journal Article

The Missing Link: Developing a Safety Case for Perception Components in Automated Driving

2022-03-29
2022-01-0818
Safety assurance is a central concern for the development and societal acceptance of automated driving (AD) systems. Perception is a key aspect of AD that relies heavily on Machine Learning (ML). Despite the known challenges with the safety assurance of ML-based components, proposals have recently emerged for unit-level safety cases addressing these components. Unfortunately, AD safety cases express safety requirements at the system level and these efforts are missing the critical linking argument needed to integrate safety requirements at the system level with component performance requirements at the unit level. In this paper, we propose the Integration Safety Case for Perception (ISCaP), a generic template for such a linking safety argument specifically tailored for perception components. The template takes a deductive and formal approach to define strong traceability between levels.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

The Advanced Diesel Common Rail System for Achieving a Good Balance Between Ecology and Economy

2008-01-09
2008-28-0017
At present, various efforts are being made in the industrial world to preserve the earth's environment. Automobile industry has to comply with the emission control regulations including NOx and PM and the requirement of reducing CO2 emission from the viewpoint of global warming protection and energy saving. In these situations, diesel engines having a high potential to reduce CO2 emission are attracting much attention. In order to enhance the potential of diesel to reduce CO2 while solving its problems (“slow, dirty, noisy”), common rail systems are vital. DENSO developed an advanced common rail system (CRS) that integrates fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa injection pressure. This paper describes the injection performance and effects of the 180MPa common rail system and then explains the next generation common rail system.
Technical Paper

System Test of Light Assist Functions

2012-04-16
2012-01-1177
The increasing complexity of automotive design includes elementary aspects such as lighting. In order to validate modern light systems, new approaches must be developed. Innovative solutions are provided with an indoor lighting facility which performs tests under ideal and repeatable environmental conditions, as well as a ground-breaking approach in evaluating the static and dynamic aspects of lighting. This combination enables the simulation of traffic scenarios and the stimulation of lighting assistance systems.
Technical Paper

Super Ignition Spark Plug with Fine Center & Ground Electrodes

2003-03-03
2003-01-0404
Spark plugs with higher ignitability are continuously in great demand to realize high fuel efficiency and low emissions. To meet this demand, DENSO launched the Iridium Spark Plug in 1997, which realized the two characteristics that had been conventionally difficult to achieve concurrently-high ignitability and long life. The development of this product was enabled by miniaturizing the center electrode, produced using DENSO's original, highly wear-resistant iridium alloy (featuring a high melting point and excellent oxidation resistance). While spark plugs are now required to have a longer service life, they are also required to be higher in ignitability, as exhaust gas regulations have been tightened recently. However, the effort to miniaturize the center electrode is reaching a limit.
Technical Paper

Study of the In-Line Pump System for Diesel Engines to Meet Future Emission Regulations

1998-02-23
980812
In an effort to protect the earth's environment, emission regulations in the diesel engine field are becoming increasingly strict. One way of meeting these regulations is to atomize the fuel spray by using a fuel injection system with high-pressure injection, which activates engine combustion. With current in-line pump systems, however, it is still possible to satisfy the demand for cleaner emissions by improving the fuel spray, through measures such as reviewing high-pressure injection and initiating improvements in the nozzle. This report describes the new in-line pump system for medium duty diesel engines to meet future emission regulations. In this report, we will describe how analytical technology, such as computer simulation, was used on the pump side to make improvements for higher injection pressure.
Technical Paper

Streamlining Hybrid Vehicle Control Development with an Efficient MATLAB/Simulink Simulation Platform

2024-04-09
2024-01-2853
Automotive hybrid vehicle controls development is an increasingly complex and challenging task. Therefore, to adequately verify and validate the control algorithms prior to its deployment onto real world testing platforms a robust, scalable, low-maintenance simulation platform is most necessary. The currently available test properties pose major challenges in setup, accessibility, maintenance, complexity, and reusability. The aim of this paper is to present a systematic approach of the initial setup, the adaptation to a vehicle program, and the maintenance of a purely MATLAB/Simulink based simulation platform that alleviates the concerns highlighted above. The platform follows the approach of a level 1 virtualization platform for production intent application software components - without the Run-Time Environment (RTE), Basic Software (BSW), and Microcode Abstraction (MCAL) layers.
Technical Paper

Scene Based Safety Functions for Pedestrian Detection Systems

2013-01-09
2013-26-0020
The protection of pedestrians from injuries by accidental collision is a primary focus of the automotive industry and of government legislation [1]. In this area, scientists and developers are faced with a multitude of requirements. Complex scenes are to be analyzed. The wide spectrum of where pedestrians and cyclists appear on the road, weather, and light conditions are just examples. Data fusion of raw or preprocessed signals for several sensors (cameras, radar, lidar, ultrasonic) need to be considered as well. Accordingly, algorithms are very complex. When moving from prototypic environments to embedded systems, additional constraints must be considered. Limited system resources drive the need to simplify and optimize for technical and economic reasons. With all these constraints, how can the safety functions be safe-guarded? This submission considers scene-based methods for the development of vehicle functions from prototype to series production focusing on functional safety.
Technical Paper

STATE OF HEALTH DETERMINATION OF LITHIUM ION CELLS IN AND OUTSIDE THE VEHICLE

2011-05-17
2011-39-7235
There is an enormous effort to implement safety functionality into battery systems to prevent any accidents with the poisonous and inflammable ingredients of the electrolytes and electrode materials. But not only the safety regulation for lithium ion batteries will be different in comparison to the home electronics application, also the operating strategy must be different to guaranty the required lifetime in the automotive industry up to 10-12 years. This paperwork will show an approach to get offline (on test benches) and/or online (installed inside the car) information regarding the current healthy and state inside the cell. As an approach modeling of physical effects by the help of electro impedance spectroscopy (EIS) will be applied.
Technical Paper

Response Surface Modeling of Diesel Spray Parameterized by Geometries Inside of Nozzle

2011-04-12
2011-01-0390
A response surface model of a diesel spray, parameterized by the internal geometries of a nozzle, is established in order to design the nozzle geometries optimally for spray mixing. The explanatory variables are the number of holes, the hole diameter, the inclined angle, the hole length, the hole inlet radius, K-factor and the sac diameter. The model is defined as a full second-order polynomial model including all the first-order interactions of the variables, and a total of 40 sets of numerical simulations based on D-optimal design are carried out to calculate the partial regression coefficients. Partial regression coefficients that deteriorate the estimate accuracy are eliminated by a validation process, so that the estimate accuracy is improved to be ±3% and ±15% for the spray penetration and the spread, respectively. Then, the model is applied to an optimization of the internal geometries for the spray penetration and the spray spread through a multi-objective genetic algorism.
Technical Paper

Prioritized CSMA Protocol for Roadside-to-Vehicle and Vehicle-to-Vehicle Communication Systems

2009-04-20
2009-01-0165
This paper proposes Prioritized-CSMA (Carrier Sense Multiple Access) protocol for Japanese vehicle safety communications (VSC). To realize Japanese VSC, we have studied a protocol to carry out Roadside-to-Vehicle (R2V) and Vehicle-to-Vehicle (V2V) communications on single channel because a single 10MHz bandwidth channel on UHF band is allocated for VSC in Japan. In this case, R2V communication requires higher quality than V2V communication, so we have developed a protocol to prevent interference between R2V and V2V communications. The proposed protocol has been evaluated by field experiments and a simulation. The results confirm that the proposed protocol prevents the interference effectively and it has capability to achieve high-quality R2V communication in actual case.
Journal Article

Prediction of Cavitation Erosion Intensity Using Large-Scale Diesel Nozzles

2019-12-19
2019-01-2278
In the field of heavy-duty diesel engines, which require lifetime durability and high fuel efficiency, there is a growing demand for increased injection pressure and increased flow rate inside injection holes. This trend makes it important to prevent cavitation erosion of injector nozzles. This paper aims to clarify the relation between cavitation behavior and erosion damage experimentally by visualizing the flow inside diesel nozzles and to establish a new method for predicting cavitation erosion. To visualize internal flow, authors used the large-scale transparent nozzle whose Reynolds number and Cavitation number were matched with those of the actual real-size nozzle. Direct observation showed that the form of the cavitation changed from string-type cavitation to film-type cavitation with increasing needle lift.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
X