Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

Thermo-Mechanical Fatigue Study of Gasoline Engine Exhaust Manifold Based on Weak Coupling of CFD and FE

2016-10-17
2016-01-2350
This paper combines fluid software STAR-CCM+ and finite element software ABAQUS to solve the temperature field of this Gasoline engine exhaust manifold based on loose coupling method. Through the simulation of car parking cooling - full load condition at full speed, we estimate thermal fatigue life of the exhaust manifold with the plastic strain increment as the evaluation parameters. It can guide the direction of optimal design of the exhaust manifold. Here we also revealed how the bolt force affects the manifold elastic and plastic behavior.
Technical Paper

The Tunnel Climbing Acceleration Reminder System Based on Vehicle Dynamics

2017-03-28
2017-01-0079
Road traffic congestion sometimes happens at tunnel exit even without high traffic flow. One reason is that the deceleration process is imperceptible when the vehicle is driving to the tunnel exit with gradual upgrade slopes. Nowadays regulations are more concentrated in transport sectors, and control measures are applied to vehicles through the tunnel. This process is careless of vehicles’ specific characteristics and easily distract the driver attention. In this paper, a tunnel climbing acceleration reminder system is introduced. When the speed drop is detected and the analysis show this is due to the driver's unconscious behavior, the system will remind the driver to speed up. Based on the dynamic model and the tunnel properties, the relationship between the throttle opening degrees and the duration with the speed change is studied. Then, the engine braking is considered for the variation of speeds and slopes.
Technical Paper

The Topology Optimization Analysis on Rope-Wheel Glass Lifter

2016-04-05
2016-01-1384
Glass lifter is a key part of automobile door system. Guide rail is the carrier of glass lifter, and it bears various load cases when glass lifer works. Mass, stiffness and natural frequencies are the factors that influence the performance of glass lifter. In order to design a lighter and reasonable glass lifter, topology optimization methods are studied in this paper. In a rope-wheel glass lifter, design domain is determined by the mechanical structure and working conditions. Firstly, the single target continuum structure topology optimization mathematic models of guide rail are built in this paper, and analysis of multi-stiffness topology optimization are carried out accordingly in which volume fraction is set as 0.4, 0.5 and 0.6. These models are based on SIMP (Solid Isotropic Material with Penalization) theory.
Technical Paper

The Shock Absorber of Energy Recovery Using Electrorheological Fluid

2012-04-16
2012-01-0981
When vehicle traveling on the bumpy road or vehicle acceleration and deceleration, which will cause the body vibration of vehicle, at the same time, a large part of energy would be absorbed by the shock absorber transforms the mechanical energy into heat energy dissipated. In order to recycle the energy of vibration and keep the stability of running car, this paper provides the shock absorber of energy recovery that recycling the energy dissipated from the traditional absorber. The shock absorber includes rod and rodless chamber cavity, the two parts contain oil outlet and oil inlet, which connected to a bridge type loop of hydraulic to make pulsating oil pressure towards one direction, when the shock absorber vibration causes pulsating oil pressure, it drives hydraulic pump operation. Because the output shaft of the hydraulic pump fixedly attached to the input shaft of generator, so the generator produces electricity for recycling energy[1].
Technical Paper

The Organic Medium Physical State Analysis for Engine Exhaust Thermal Recovery

2015-04-14
2015-01-1610
The Organic Rankine Cycle System is an effective approach for recovering the engine exhaust thermal energy. The physical characteristic of the Rankine fluid is the key factor for the capacity and the stability of the expander power output. In the research, the influences of the evaporator organic medium state and flow rate on the expander power output are fully analyzed for the sufficient utilization of the waste thermal energy. Firstly, the exhaust characteristics of the diesel engine were processed by the data of the bench test. Then, the integral mathematical model of the Organic Rankine Cycle was built. Based on the comparison for the 2-zone and 3-zone evaporator, the influence for expander output are analyzed especially emphasis on the factors of engine working condition, the flow rate, temperature and state of Rankine fluid.
Journal Article

The Energy Management for Solar Powered Vehicle Parking Ventilation System

2015-04-14
2015-01-0149
In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
Technical Paper

The Application of the PUREM SCR System on YC6L350-40 HD Diesel Engine

2007-07-23
2007-01-1935
In order to meet the Euro IV HD diesel engine emission standard legislation limits, an efficient SCR system is adopted for PM optimized YC6L350-40 HD diesel engine serving in China. This paper presents tests made on the engine. The engine had base NOx emission of 8.8g/kwh over the ESC and 8.7g/kwh over the ETC. Outfitted with a 24.7 liter 300cpsi SCR catalyst, the engine NOx emission dropped to 3.2g/kwh over the ESC and 3.5g/kwh over the ETC.
Technical Paper

TD3 Tuned PID Controller for Autonomous Vehicle Platooning

2023-12-31
2023-01-7108
The main objective of platoon control is coordinated motion of autonomous vehicle platooning with small intervehicle spacing while maintaining the same speed and acceleration as the leading vehicle, which can save energy consumption and improve traffic throughput. The conventional platoon control methods are confronted with the problem of manual parameter tuning. In order to addres this isue, a novel bifold platoon control approach leveraging a deep reinforcement learning-based model is proposed, which enables the platoon adapt to the complex traffic environment, and guarantees the safety of platoon. The upper layer controller based on the TD3 tuned PID algorithm outputs the desired acceleration. This integration mitigates the inconvenience of frequent manual parameter tuning asociated with the conventional PID algorithm. The lower layer controller tracks the desired acceleration based on the inverse vehicle dynamics model and feedback control.
Technical Paper

Study on Variable Combustion Chamber (VCC) Engines

2012-09-10
2012-01-1607
A patented VCC (variable combustion chamber) piston mechanism is presented, by which excess in-cylinder pressure would be able to be limited effectively based on each working cycle while a spark-ignition engine running with higher CR (compression ratio) of 12.0:1. A conventional engine can be converted to a VCC engine just by replacing its typical pistons with VCC pistons. Besides the benefits that VCR (Variable Compression Ratio) has been still pursued so far, there would be other advantages for VCC engine, such as excellent fuel economy at each load not only at light loads, and the improvement of cycle-by-cycle variation of in-cylinder pressure, and high reliability with simple structure. The innovative design of VCC piston is introduced. The main design features of VCC piston are a VCC mechanism assembled between the piston crown and the piston skirt, and a special reset cam assembled at the wrist-pin end of the connecting rod.
Technical Paper

Study on Diesel-LPG Dual Fuel Engines

2001-09-24
2001-01-3679
A new type of dual fuel supply system has been developed. This system is able to economically convert conventional diesel engines into dual-fuel engines like LPG/Diesel engines and CNG/Diesel engines, which are capable of either using single diesel fuel or using dual-fuel including both diesel and CNG fuel or both diesel and LPG fuel. These diesel-LPG engines have been applied to the diesel buses in the public transportation of Guangzhou city, one of the biggest cities in China, owning to their low soot emissions, excellent operating performances and extremely low cost as well. Compared with the diesel baseline engine, it was found that there were a significant reduction in soot emission and an improvement of the fuel consumption with the diesel-LPG engine. Also the strategy on LPG content is discussed in order to meet the demands for soot emission, fuel economy, transient performance and output power at the same time.
Technical Paper

Structural Design and Simulation Analysis of an Intelligent Speed Bump

2021-04-06
2021-01-0324
As a traffic deceleration device, speed bumps are widely used to reduce the speed of vehicles and have a good effect. However, in special occasions such as hospital entrance, the bumps caused by ordinary speed bumps are likely to aggravate the pain of patients. In view of this situation, an intelligent speed bump is designed in this paper, which can adjust the height of the speed bump according to the speed of the passing vehicles. When a low-speed vehicle passes by, the elastic link slider module works, so that the upper surface of the speed bump can be elastically lowered to improve the ride comfort of low-speed vehicles. When a high-speed vehicle passes by, the centrifugal locking module will lock the elastic link slider module, and the upper surface of the speed bump will be locked, which plays a role in speed limit. In this paper, SolidWorks and ADAMS/car are used to analyze the process of vehicle passing through the intelligent speed bump.
Technical Paper

Solar Powered Vehicle Parking Ventilation System Pre-Cooling Analysis

2015-04-14
2015-01-0367
The cabin air temperature increases quickly and can reach 80°C when the vehicle parks in the summer sunlight which has the bad influence on the occupants entering comfort. Some luxury vehicles, like Audi A8[1], reduce the internal temperature through operating air-condition in advance or using on-board battery to drive the cabin ventilator, which requires relatively complex control system and limits the system's operating time because of energy consumption. This research adopts the solar wing as the ventilation power supply and accomplishes the cabin real-time heat rejection by achieving the steady air circulation for both inside and outside environment. First, the static thermal transfer model of the crew cabin is established. Then, on the basis of the parameters of the prototype ventilation pipe, the ventilation model for the outside circulation is built.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
Technical Paper

Simulation Analysis of a Dry Cooling Equipment

2016-04-05
2016-01-0194
The exhaust cooling is an important index which measures the performance of the flameproof diesel engine. In this paper, a modification model is built for enhancing the cooling performance of exhaust, based on the reference model of the dry cooling equipment. The annular nozzle direction, extend plate of guide, bellows and elbow are introduced and studied in the model as the modification way. Considering the Coanda and Venturi effects, the comprehensive comparison of fluid velocity, temperature, pressure and mixture coefficient is implemented, and the optimum horizontal dimension of throat is summarized. The simulation results indicate the modification model shows better performance in reducing exhaust temperature and pressure than the reference model.
Technical Paper

Road Sign Recognition System Based on Wavelet Transform and OPSA Point Set Distance

2018-08-07
2018-01-1609
Signage recognition is one of the hot topics in recent years. It has important applications in intelligent traffic and autonomous driving of smart cars. This paper designs a road marking recognition method combining OPSA point set distance and wavelet transform. The method consists of three main phases: 1) image denoising, restoration, 2) feature extraction, and 3) image recognition. First, a Gaussian-smoothing filter used to attenuate or remove irrelevant information in the image, enhance related information in the image, and achieve image denoising. In the feature extraction stage, the feature extraction and recognition method based on wavelet transform adopted to overcome the deficiency of the traditional Fourier feature extraction method, ensure that high frequency information is not lost, and low frequency information is not lost. Finally, the OSPA point set used to identify distance markers.
Technical Paper

Research on the Harmonics-Based the Optimization Algorithm for the Active Synthesis of Automobile Sound

2023-05-08
2023-01-1045
The technology of active sound generation (ASG) for automobiles is one of the most effective methods to flexibly achieve the sound design that meets the expectations of different user groups, and the active sound synthesis algorithms are crucial for the implementation of ASG. In this paper, the Kaiser window function-based the harmonic synthesis algorithm of automobile sound is proposed to achieve the extraction of the order sounds of target automobile. And, the suitable fitting functions are utilized to construct the mathematical model between the engine speed information and the amplitude of the different order sound. Then, a random phase correction algorithm is proposed to ensure the coherence of the synthesized sounds. Finally, the analysis of simulation results verifies that the established method of the extraction and synthesis of order sound can meet the requirements of target sound quality.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
X