Refine Your Search

Topic

Search Results

Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2005-01-05
HISTORICAL
AS586B
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2002-07-30
HISTORICAL
AS586A
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2011-01-06
CURRENT
AS586C
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Valve, Inflation, Aircraft Wheel

2019-11-14
CURRENT
AS6817
This SAE Aerospace Standard (AS) defines the configuration of aircraft wheel inflation valve assemblies, including required tolerances, materials, and appropriate finishes.
Standard

USAF Aircraft Wheels

2012-05-09
HISTORICAL
AIR4012B
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
Standard

USAF Aircraft Wheels

2012-07-19
CURRENT
AIR4012C
This SAE Aerospace Information Report (AIR) documents general technical data associated with many of the wheels used in the Air Force.
Standard

Replacement and Modified Brakes and Wheels

2016-10-21
CURRENT
ARP1619B
This SAE Aerospace Recommended Practice (ARP) defines recommended planning and substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety of the originally certified aircraft, and performance and aircraft compatibility are appropriately addressed in aircraft documentation. Successful demonstration also requires that failure modes be identified and mitigation provided for each. These procedures apply to modifications made by the original component or assembly supplier as well as approval of an alternate supplier.
Standard

Replacement and Modified Brakes and Wheels

2012-05-16
HISTORICAL
ARP1619A
This SAE Aerospace Recommended Practice (ARP) defines recommended substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety, performance, and airplane compatibility of the originally certified commercial and military aircraft. Successful demonstration also includes confirmation that no adverse failure modes are introduced. These procedures apply to modifications made by the original component or assembly supplier as well as certification of an alternate supplier.
Standard

Recommended Wheel Tie Bolt Preload Procedure

2007-08-09
HISTORICAL
ARP5481
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Standard

Recommended Wheel Tie Bolt Preload Procedure

2020-09-17
CURRENT
ARP5481A
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Standard

REPLACEMENT AND MODIFIED BRAKES AND WHEELS

1993-04-01
HISTORICAL
ARP1619
This Aerospace Recommended Practice (ARP) identifies "type" and "degree" of change to brake, wheel, or component thereof, and recommends substantiation procedures to confirm that performance capability of an existing aircraft using the replacement or modified brake and wheel equipment is not less than that when originally certified for commercial or military aircraft applications.
Standard

Overpressurization Release Devices

2018-06-21
CURRENT
ARP1322C
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
X