Refine Your Search

Topic

Search Results

Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

2002-10-21
2002-01-2862
This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
Technical Paper

Quantification of the Formaldehyde Emissions from Different HCCI Engines Running on a Range of Fuels

2005-10-24
2005-01-3724
In this paper, the formaldehyde emissions from three different types of homogenous charge compression ignition (HCCI) engines are quantified for a range of fuels by means of Fourier Transform Infra Red (FTIR) spectroscopic analysis. The engines types are differentiated in the way the charge is prepared. The characterized engines are; the conventional port fuel injected one, a type that traps residuals by means of a Negative Valve Overlap (NVO) and finally a Direct Injected (DI) one. Fuels ranging from pure n-heptane to iso-octane via diesel, gasoline, PRF80, methanol and ethanol were characterized. Generally, the amount of formaldehyde found in the exhaust was decreasing with decreasing air/fuel ratio, advanced timing and increasing cycle temperature. It was found that increasing the source of formaldehyde i.e. the ratio of heat released in the cool-flame, brought on higher exhaust contents of formaldehyde.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
Technical Paper

Particle Image Velocimetry Flow Measurements and Heat-Release Analysis in a Cross-Flow Cylinder Head

2002-10-21
2002-01-2840
A specially designed cylinder head, enabling unthrottled operation with a standard cam-phasing mechanism, was tested in an optical single-cylinder engine. The in-cylinder flow was measured with particle image velocimetry (PIV) and the results were compared with heat release and emission measurements. The article also discusses effects of residual gas and effective compression ratio on heat-release and emissions. The special design of the cylinder head, with one inlet and one exhaust valve per camshaft, made it possible to operate the engine unthrottled at part load. Cam phasing led to late inlet valve closing, but also to increased valve overlap. The exhaust valve closing was late in the intake stroke, resulting in high amounts of residual gases. Two different camshafts were used with late inlet valve closing. One of the camshafts had shorter valve open duration on the phased exhaust cam lobe.
Technical Paper

Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

2018-04-03
2018-01-0896
Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NOX) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at −180 CAD (aTDC) and −30 CAD (aTDC), respectively.
Technical Paper

Load Control Using Late Intake Valve Closing in a Cross Flow Cylinder Head

2001-09-24
2001-01-3554
A newly developed cross flow cylinder head has been used for comparison between throttled and unthrottled operation using late intake valve closing. Pressure measurements have been used for calculations of indicated load and heat-release. Emission measurements has also been made. A model was used for estimating the amount of residual gases resulting from the different load strategies. Unthrottled operation using late intake valve closing resulted in lower pumping losses, but also in increased amounts of residual gases, using this cylinder head. This is due to the special design, with one intake valve and one exhaust valve per camshaft. Late intake valve closing was achieved by phasing one of the camshafts, resulting in late exhaust valve closing as well. With very late phasing - i.e. low load - the effective compression ratio was reduced. This, in combination with high amount of residual gases, resulted in a very unstable combustion.
Technical Paper

Laser Sheet Droplet Concentration Measurements in a High Speed Two-Stroke Engine

1997-10-27
978494
Laser sheet droplet illumination was used to visualize the concentration of fuel droplets over the piston top area. Four different cylinder designs were examined: Open transfer channels and three types of cup handle transfer channels. Optical access to the scavenging area of the engine was achieved by removing the silencer and use a window in the top of the engine. The engines were run at their rated speeds: 9000 rpm for three of the engines and 5800 rpm for one of them. Images of the concentration patterns were captured at various crank positions, −20, −10, 0, 10, 20, 30 Crank Angle Degrees (CAD) from Bottom Dead Center (BDC). Results show that the concentration of fuel droplets is higher close to the back wall of the cylinder with cup handle transfer channels. Late in the scavenging phase, the concentration pattern is more spread over the entire cylinder area, for all types of transfer channels.
Technical Paper

Influence of Inlet Temperature and Hot Residual Gases on the Performances of a Mini High Speed Glow Plug Engine

2006-11-13
2006-32-0057
Nowadays the power supplying systems have a fundamental importance for all small and portable devices. For low power applications, there are two main ways for producing power: electrochemical batteries and mini engines. Even though in recent years many developments have been carried out in improving the design of batteries, the energy density of 1MJ/kg seems to be an asymptotic value. If the energy source is a hydrocarbon fuel, whose energy density is 46 MJ/kg, with an overall efficiency of only 2.5 % it is possible to surpass the electrochemical batteries. On the other hand, having a mini engine, as energy source, implies three main problems: vibrations, noise and emissions. A light (230 g) model airplane engine with a displacement volume of 4.11 cm3 and a geometrical compression ratio of 13.91 has been studied. The work carried out in this paper can be divided basically in three parts.
Technical Paper

HCCI Heat Release Data for Combustion Simulation, Based on Results from a Turbocharged Multi Cylinder Engine

2010-05-05
2010-01-1490
When simulating homogenous charge compression ignition or HCCI using one-dimensional models it is important to have the right combustion parameters. When operating in HCCI the heat release parameters will have a high influence on the simulation result due to the rapid combustion rate, especially if the engine is turbocharged. In this paper an extensive testing data base is used for showing the combustion data from a turbocharged engine operating in HCCI mode. The experimental data cover a wide range, which span from 1000 rpm to 3000 rpm and engine loads between 100 kPa up to over 600 kPa indicated mean effective pressure in this engine speed range. The combustion data presented are: used combustion timing, combustion duration and heat release rate. The combustion timing follows the load and a trend line is presented that is used for engine simulation. The combustion duration in time is fairly constant at different load and engine speeds for the chosen combustion timings here.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Technical Paper

Crank Angle Resolved HC-Detection Using LIF in the Exhausts of Small Two-Stroke Engines Running at High Engine Speed

1996-10-01
961927
In order to separate the HC-emissions from two-stroke engines into short-circuit losses and emissions due to incomplete combustion, Laser Induced Fluorescence (LIF) measurements were performed on the exhaust gases just outside the exhaust ports of two engines of different designs. The difference between the two engines was the design of the transfer channels. One engine had “finger” transfer channels and one had “cup handle” transfer channels. Apart from that they were similar. The engine with “finger” transfer channels was earlier known to give more short-circuiting losses than the other engine, and that behavior was confirmed by these measurements. Generally, the results show that the emission of hydrocarbons has two peaks, one just after exhaust port opening and one late in the scavenging phase. The spectral information shows differences between the two peaks and it can be concluded that the latter peak is due to short-circuiting and the earlier due to incomplete combustion.
Journal Article

Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions

2013-04-08
2013-01-0902
Gasoline partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions. The problem is the ignitability at low load and idle operating conditions. In a previous study it was shown that it is possible to use NVO to improve combustion stability and combustion efficiency at operating conditions where available boosted air is assumed to be limited. NVO has the disadvantage of low net indicated efficiency due to heat losses from recompressions of the hot residual gases. An alternative to NVO is the rebreathing valve strategy where the exhaust valves are reopened during the intake stroke. The net indicated efficiency is expected to be higher with the rebreathing strategy but the question is if similar improvements in combustion stability can be achieved with rebreathing as with NVO.
Technical Paper

Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

2018-04-03
2018-01-1246
Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement.
Technical Paper

Blending Octane Number of 1-Butanol and Iso-Octane with Low Octane Fuels in HCCI Combustion Mode

2018-09-10
2018-01-1681
Due to their physical and chemical properties, alcohols such as ethanol and methanol when blended with gasoline provide high anti-knock quality and hence efficient engines. However, there are few promising properties of 1-butanol similar to conventional gasoline which make it a favorable choice for internal combustion engines. Previously the author showed that by blending ethanol and methanol with low octane fuels, non-linear increase in the HCCI fuel number occurs in HCCI combustion mode. Very few studies have been conducted on the use of 1-butanol in HCCI combustion mode, therefore for this work, 1-butanol with a RON 96 was selected as the high octane fuel. Three low octane fuels with octane number close to 70 were used as a base fuel. Two of the low octane fuels are Fuels for Advanced Combustion Engines (FACE gasolines), more specifically FACE I and FACE J and also primary reference fuel (PRF 70) were selected.
Technical Paper

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

2017-03-28
2017-01-0726
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
X