Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Use of Hybrid Fuel in a Single-Cylinder Diesel Engine

1980-10-01
801380
Hybrids are fuels derived from combinations of different energy sources and which are generally formulated as solutions, emulsions, or slurries. The underlying objective of this program is to reduce the use of petroleum-derived fuels and/or to minimize the processing requirements of the finished hybrid fuels. Several hybrid fuel formulations have been developed and tested in a direct injection single-cylinder diesel engine. The formulations included solutions of ethanol and vegetable oils in diesel fuel, emulsions of methanol and of ethanol in diesel fuel; and slurries of starch, cellulose, and “carbon” in diesel fuel. Based on the progress to date, the solutions and emulsions appear to be viable diesel engine fuels if the economic factors are favorable and the storage and handling problems are not too severe. The slurries, on the other hand, are not to the same point of development as the solutions and emulsions.
Technical Paper

The Laminar Burning Velocity of Isooctane, N-Heptane, Methanol, Methane, and Propane at Elevated Temperature and Pressures in the Presence of a Diluent

1980-02-01
800103
A constant volume bomb was used to determine basic combustion characteristics of isooctane, n-heptane, methanol, propane and methane. Results show that the laminar flame velocity of a quiescent homogeneous air/fuel mixture can be derived from pressure-time data in the bomb. The effects of pressure, temperature, and charge dilution on flame velocity and ignition are presented. A thermo-chemical kinetic model accurately predicted concentrations of nitric oxide during combustion and in the burned gas.
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

The Effects of Fuel Properties and Composition on Diesel Engine Exhaust Emissions - A Review

1981-09-01
810953
Due to the cost and mobility advantages of diesel-powered mine vehicles over electric vehicles, it is anticipated that the diesel engine will become more widely used in underground mines in this country. Concern has arisen, however, over the impact of diesel exhaust emissions on the air quality in the underground mine environment. A literature search has been conducted to identify known effects of fuel properties on the reduction of diesel exhaust emissions. Reductions can be obtained by optimizing fuel properties and by considering alternative fuels to standard diesel fuel. However, the data base is relatively small and the results highly dependent on engine type and operating conditions. Engine studies on a typical mine diesel are necessary to draw quantitative conclusions regarding the reduction of emissions, especially particulates and NO2 which have not been generally addressed in previous studies.
Technical Paper

The Effects of Engine and Fuel Parameters on Diesel Exhaust Emissions during Discrete Transients in Speed and Load

1985-02-01
850110
Diesel exhaust emission levels have been measured during discrete transients in speed and load, and with changes made to the engine and fuel. Particulate, oxides of nitrogen, unburned hydrocarbon, and carbon monoxide measurements were made for two fuels, DF2 and 5 percent water-in-fuel microemulsion, for both a standard Caterpillar 3304 and a modified 3304 engine. Engine modifications included increasing compression ratio and retarding injection timing. This paper examines the effects of the water addition and engine modification on the steady-state and transient emission levels. In general, the addition of water decreased the particulate and oxides of nitrogen emission levels for the standard engine, but increased the levels of hydrocarbons and carbon monoxide. For the modified engine, the water addition resulted in a slight decrease in oxides of nitrogen and particulate matter at high speed and load conditions.
Technical Paper

The Effects of Discrete Transients in Speed and Load on Diesel Engine Exhaust Emissions

1985-02-01
850109
The responses of diesel engine exhaust emissions to transients in speed and torque are examined. Particulate matter, hydrocarbons, carbon monoxide, and oxides of nitrogen were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments, two of which were steady state, in general, each segment was defined by choosing the beginning and ending values for speed and torque, and the segment length. Using regression techniques, prediction equations were obtained for each emission. The equations relate the emission levels to engine parameters, which describe each segment. Speed and torque were found to be important variables as were the rates at which speed and torque changed. Transients in torque were found to increase particulate and carbon monoxide emissions.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Performance Predictions for High Efficiency Stoichiometric Spark Ignited Engines

2005-04-11
2005-01-0995
Southwest Research Institute (SwRI) is exploring the feasibility of extending the performance and fuel efficiency of the spark ignition (SI) engine to match that of the emission constrained compression (CI) engine, whilst retaining the cost effective 3-way stoichiometric aftertreatment systems associated with traditional SI light duty engines. The engine concept, which has a relatively high compression ratio and uses heavy EGR, is called “HEDGE”, i.e. High Efficiency Durable Gasoline Engine. Whereas previous SwRI papers have been medium and heavy duty development focused, this paper uses results from simulations, with some test bed correlations, to predict multicylinder torque curves, brake thermal efficiency and NOx emissions as well as knock limit for light and medium duty applications.
Technical Paper

Partial Pre-Mixed Combustion with Cooled and Uncooled EGR in a Heavy-Duty Diesel Engine

2002-03-04
2002-01-0963
An experimental investigation of the effects of partial premixed charge compression ignition (PCCI) combustion and EGR temperature was conducted on a Caterpillar C-12 heavy-duty diesel engine (HDDE). The addition of EGR and PCCI combustion resulted in significant NOx reductions over the AVL 8-mode test. The lowest weighted BSNOx achieved was 2.55 g/kW-hr (1.90 g/hp-hr) using cooled EGR and 20% port fuel injection (PFI). This represents a 54% reduction compared to the stock engine. BSHC and BSCO emissions increased by a factor of 8 and 10, respectively, compared to the stock engine. BSFC also increased by 7.7%. In general, BSHC, BSCO, BSPM, and BSFC increased linearly with the amount of port-injected fuel.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

1998-02-23
980174
Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

1994-10-01
941918
High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

1994-10-01
941919
Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Ignition Delay as Determined in a Variable-Compression Ratio Direct-Injection Diesel Engine

1987-11-01
872036
A variable-compression ratio, direct-injection diesel engine (VCR) has been designed and assembled at Southwest Research Institute with the intention of examining the current procedures for rating the ignition quality of diesel fuels and the meaning of ignition delay as an indicator of ignition and combustion quality. Using a slightly modified ASTM D 613 procedure, the engine has been used to rate the ignition quality of 43 different test fuels. The ratings obtained in the VCR engine are compared to the corresponding rating obtained using the standard cetane rating procedure. Some of the problems associated with the standard procedure became apparent during these experiments. The experimental results are discussed in terms of the problems and the advantages of a proposed VCR-based rating procedure.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

1996-05-01
961160
A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
Technical Paper

Heavy-Duty Diesel Engine Emissions Tests Using Special Biodiesel Fuels

2005-10-24
2005-01-3671
A 2003 heavy-duty diesel engine (2002 emissions level) was used to test a representative biodiesel fuel as well as the methyl esters of several different fatty acids. The fuel variables included degree of saturation, the oxygen content, and carbon chain length. In addition, two pure normal paraffins with the corresponding chain lengths of two of the methyl esters were also tested to determine the impact of chain length. The dependent variables were the NOx and the particulate emissions (PM). The results indicated that the primary fuel variable affecting the emissions is the oxygen content. The emissions results showed that the highest oxygen content test fuel had the lowest emissions of both NOx and PM. As compared to the baseline diesel fuel the NOx emissions were reduced by 5 percent and the PM emissions were reduced by 83 percent.
Technical Paper

HCCI in a Variable Compression Ratio Engine-Effects of Engine Variables

2004-06-08
2004-01-1971
Homogeneous Charge Compression Ignition (HCCI) experiments were performed in a variable compression ratio single cylinder engine. This is the fourth paper resulting from work performed at Southwest Research Institute in this HCCI engine. The experimental variables, in addition to speed and load, included compression ratio, EGR level, intake manifold pressure and temperature, fuel introduction location, and fuel composition. Mixture preparation and start of reaction control were identified as fundamental problems that required non-traditional mixture preparation and control strategies. The effects of the independent variable on the start of reaction have been documented. For fuels that display significant pre-flame reactions, the start of the pre-flame reactions is controlled primarily by the selection of the fuel and the temperature history of the fuel air mixture.
Technical Paper

HCCI Operation of a Dual-Fuel Natural Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low to Moderate Engine Loads

2001-05-07
2001-01-1897
A new combustion concept has been developed and tested for improving the low to moderate load efficiency and NOx emissions of natural gas engines. This concept involves operation of a dual-fuel natural gas engine on Homogeneous Charge Compression Ignition (HCCI) in the load regime of idle up to 35 % of the peak torque. A dual-fuel approach is used to control the combustion phasing of the engine during HCCI operation, and conventional spark-ignited natural gas combustion is used for the high-load regime. This concept has resulted in an engine with power output and high-load fuel efficiency that are unchanged from the base engine, but with a 10 - 15 % improvement to the low to moderate load fuel efficiency. In addition, the engine-out NOx emissions during HCCI operation are over 90% lower than on spark-ignited natural gas operation over the equivalent load range.
Technical Paper

Fuel Requirements for HCCI Engine Operation

2003-05-19
2003-01-1813
Researchers at Southwest Research Institute (SwRI) have been working for the past several years on the fundamental and practical aspects of homogeneous charge compression ignition (HCCI) operation of reciprocating engines. Much of the work has focused on the use of diesel fuel. The work at SwRI has, however, demonstrated that there are fundamental limitations on the use of current diesel fuels in HCCI engines. The results of engine and constant volume combustion bomb experiments are presented and discussed. The engine experiments were used to identify important fuel properties that must be included in a fuel specification for HCCI fuels. The primary properties relate to the distillation characteristics and the ignition characteristics. The engine test provided preliminary guidance on the distillation requirements and an indication of the important ignition requirements.
X