Refine Your Search

Topic

Search Results

Journal Article

Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0761
In this study, in order to clarify the mechanism of preignition occurrence in highly boosted SI engine at low speed and high load operating conditions, directphotography of preignition events and light induced fluorescence imaging of lubricant oil droplets during preignition cycles were applied. An endoscope was attached to the cylinder head of the modified production engine. Preigntion events were captured using high-speed video camera through the endoscope. As a result, several types of preignition sources could be found. Preignition caused by glowing particles and deposit fragments could be observed by directphotography. Luminous flame was observed around the piston crevice area during the exhaust stroke of preignition cycles.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

2017-11-05
2017-32-0061
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Proposition of a Stratified Charge System by Using In-Cylinder Gas Motion

1995-10-01
952455
A new idea for controlling the in-cylinder mixture formation in SI engines is proposed. This concept was developed by applying the results of numerical calculations. Fuel that is directly injected into the cylinder is transferred toward the cylinder head to form a mixture stratification by using the in-cylinder gas motion that is generated by the interaction between the swirl and squish flows inside a combustion chamber. At first, the flow characteristics were measured in the whole in-cylinder space using an LDV system. Also, numerical calculations of the in-cylinder flow were made using measured data as the initial conditions. Secondly, the local equivalence ratio at several points inside the combustion chamber was measured by using a fast gas sampling device.
Technical Paper

Performance Investigation of a PFI Gasoline Engine by Applying Various Kinds of Fuel Injectors

2020-01-24
2019-32-0546
In this report, the effect of injection specification, such as droplet size, lengths of nozzle tip and spray angle, on the engine performance was investigated using a 1.2 L port fuel injection (PFI) four-cylinder gasoline engine. The experimental conditions were selected to cover the daily operating mode, including the cold start and catalyst heating process. The experiments were conducted by varying not only the injectors but also the injection timing which was shifted from the exhaust to intake stroke. The results were evaluated by the fuel consumption and exhaust gas emissions. When these tests were conducted on a production engine, a carefully designed tumble generator was installed at the intake port to enhance the intake air flow. As a result, the injection specifications showed a potential to obtain less fuel consumption and lower engine-out emissions was evaluated.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

2009-04-20
2009-01-1502
The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

Numerical Simulation to Understand the Cause and Sequence of LSPI Phenomena and Suggestion of CaO Mechanism in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0755
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

2023-10-24
2023-01-1818
Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature.
Technical Paper

Investigation of The Effect of Enhanced In-Cylinder Flow on HCCI Combustion in a Rapid Compression and Expansion Machine

2020-01-24
2019-32-0528
The purpose of this paper is to find a way to extend the high load limit of homogeneous charge compression ignition (HCCI) combustion. A newly developed rapid compression and expansion machine (RCEM) was employed to reproduce the typical HCCI high load condition. The in-cylinder turbulence was created by the special piston which equipped with a flow guide plate. Meanwhile, the ambient temperature distribution in the cylinder was determined by the wall temperature controlling system which was controlled by the independent coolant passages. In addition, the numerical simulation by using large eddy method coupled with a detailed chemical reaction was conducted as well. The results show that HCCI mode is potential to be improved at high load condition in full consideration of in-cylinder temperature, flow, and turbulence.
Technical Paper

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-09-15
2020-01-2188
In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy.
Technical Paper

Investigation of Breakup Modeling of a Diesel Spray by Making Comparisons with 2D Measurement Data

2007-07-23
2007-01-1898
In this study, the characteristics of diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method on a 2D plane to evaluate the droplet breakup modeling. In numerical analysis, DDM (Discrete Droplet Model) was employed with sub-models such as droplet breakup, droplet drag force and turbulence. Experiments have been performed with an accumulator type unit-injector system and a constant-volume high-pressure vessel under the condition of quiescent ambient gas. The injection pressure and ambient gas pressure were set up to 100 MPa and 0.1 / 1 MPa, respectively. The nozzle orifice diameter was 0.244 mm with a single hole. The measurement region was chosen at 40 ∼ 60 mm from the nozzle-tip. Numerical analysis of diesel sprays was conducted and the results were compared to the measured results.
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Improvement in Thermal Efficiency of Lean Burn Pre-Chamber Natural Gas Engine by Optimization of Combustion System

2017-03-28
2017-01-0782
To understand the mechanism of the combustion by torch flame jet in a gas engine with pre-chamber and also to obtain the strategy of improving thermal efficiency by optimizing the structure of pre-chamber including the diameter and number of orifices, the combustion process was investigated by three dimensional numerical simulations and experiments of a single cylinder natural gas engine. As a result, the configuration of orifices was found to affect the combustion performance strongly. With the same orifice diameter of 1.5mm, thermal efficiency with 7 orifices in pre-chamber was higher than that with 4 orifices in pre-chamber, mainly due to the reduction of heat loss by decreasing the impingement of torch flame on the cylinder linear. Better thermal efficiency was achieved in this case because the flame propagated area increases rapidly while the flame jets do not impinge on the cylinder wall intensively.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

2018-09-10
2018-01-1664
To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
Journal Article

Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System

2011-04-12
2011-01-0896
The objective of this study is to develop a practical technique to achieve HCCI operation with wide operation range. To attain this objective, the authors previously proposed the blowdown supercharge (BDSC) system and demonstrated the potential of the BDSC system to extend the high load HCCI operational limit. In this study, experimental works were conducted with focusing on improvement of combustion stability at low load operation and the reduction in cylinder to cylinder variation in ignition timing of multi-cylinder HCCI operation using the BDSC system. The experiments were conducted using a slightly modified production four-cylinder gasoline engine with compression ratio of about 12 at constant engine speed of 1500 rpm. The test fuel used was commercial gasoline which has RON of 91. To improve combustion stability at low load operation, the valve actuation strategy for the BDSC system was newly proposed and experimentally examined.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Technical Paper

Evaluation of a Concept for DI Gasoline Combustion Using Enhanced Gas Motion

1998-02-23
980152
A direct injection gasoline engine system which employs a unique combustion system with enhanced gas motion is evaluated. Enhanced gas motion is produced by employing both a moderately strong swirl flow and a cavity in the piston. Advantages of this system are that the injection timing or spark timing need not be controlled severely and that since the injection timing can be set at near the intake BDC, time for evaporation can be gained to reduce soot emissions. Problems to be improved are that the Nox emissions level is worse than other lean burn systems and full load operation is not evaluated. According to the numerical calculations, the problems may be solved by enhancing the in-cylinder gas motion with axial stratification of swirl intensity at intake BDC; strong swirl near the cylinder head and weak swirl near the piston surface.
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Technical Paper

Effect of Coolant Water and Intake Air Temperatures on Thermal Efficiency of Gasoline Engines

2017-11-05
2017-32-0116
An optimization of thermal management system in a gasoline engine is considered to improve thermal efficiency by minimizing the cost increase without largely changing the configuration of engine system. In this study, the influence of water temperature and intake air temperature on thermal efficiency were investigated using an inline four-cylinder 1.2L gasoline engine. In addition, one-dimensional engine simulations were conducted by using a software of GT-SUITE. Brake thermal efficiency for different engine speeds and loads could be quantitatively predicted with changing the cooling water temperature in the cylinder head. Then, in order to predict the improvement of the fuel consumption in actual use, vehicle mode running simulation and general-purpose engine transient mode simulation were carried out by GT-SUITE. As a result, it was found that by controlling the temperatures of the cooling water and intake gas, thermal efficiency can be improved by several percent.
X