Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

uACPC: Client-Initiated Privacy-Preserving Activation Codes for Pseudonym Certificates Model

2020-07-27
Abstract With the adoption of Vehicle-to-everything (V2X) technology, security and privacy of vehicles are paramount. To avoid tracking while preserving vehicle/driver’s privacy, modern vehicular public key infrastructure provision vehicles with multiple short-term pseudonym certificates. However, provisioning a large number of pseudonym certificates can lead to an enormous growth of Certificate Revocation Lists (CRLs) during its revocation process. One possible approach to avoid such CRL growth is by relying on activation code (AC)-based solutions. In such solutions, the vehicles are provisioned with batches of encrypted certificates, which are decrypted periodically via the ACs (broadcasted by the back-end system). When the system detects a revoked vehicle, it simply does not broadcast the respective vehicle’s AC. As a result, revoked vehicles do not receive their respective AC and are prevented from decrypting their certificates.
Journal Article

Worsening Perception: Real-Time Degradation of Autonomous Vehicle Perception Performance for Simulation of Adverse Weather Conditions

2022-01-06
Abstract Autonomous vehicles (AVs) rely heavily upon their perception subsystems to “see” the environment in which they operate. Unfortunately, the effect of variable weather conditions presents a significant challenge to object detection algorithms, and thus, it is imperative to test the vehicle extensively in all conditions which it may experience. However, the development of robust AV subsystems requires repeatable, controlled testing—while real weather is unpredictable and cannot be scheduled. Real-world testing in adverse conditions is an expensive and time-consuming task, often requiring access to specialist facilities. Simulation is commonly relied upon as a substitute, with increasingly visually realistic representations of the real world being developed.
Journal Article

Wireless Security in Vehicular Ad Hoc Networks: A Survey

2022-08-17
Abstract Vehicular communications face unique security issues in wireless communications. While new vehicles are equipped with a large set of communication technologies, product life cycles are long and software updates are not widespread. The result is a host of outdated and unpatched technologies being used on the street. This has especially severe security impacts because autonomous vehicles are pushing into the market, which will rely, at least partly, on the integrity of the provided information. We provide an overview of the currently deployed communication systems and their security weaknesses and features to collect and compare widely used security mechanisms. In this survey, we focus on technologies that work in an ad hoc manner. This includes Long-Term Evolution mode 4 (LTE-PC5), Wireless Access in Vehicular Environments (WAVE), Intelligent Transportation Systems at 5 Gigahertz (ITS-G5), and Bluetooth.
Journal Article

Willans Line-Based Equivalent Consumption Minimization Strategy for Charge-Sustaining Hybrid Electric Vehicle

2021-09-09
Abstract Energy management strategies for charge-sustaining hybrid electric vehicles reduce fuel consumption and maintain battery pack state of charge while meeting driver output power demand. The equivalent consumption minimization strategy is a real-time energy management strategy that makes use of an equivalence ratio to quantify electric power consumption in terms of fuel power consumption. The magnitude of the equivalence ratio determines the hybrid electric vehicle mode of operation and influences the ability of the energy management strategy to reduce fuel consumption as well as maintain the battery pack state of charge. The equivalent consumption minimization strategy in this article uses three Willans line models, which have an associated marginal efficiency and constant offset, to model the performance in the hybrid electric vehicle controller.
Journal Article

What Can User Typologies Tell Us about Carsickness Criticality in Future Mobility Systems

2022-02-15
Abstract Car manufacturers are continuously improving passenger comfort by advancing technologies including highly automated driving. Before the broad introduction of automated driving, specific human factors regarding passenger comfort must be considered, including motion sickness. Therefore, the identification of the frequency of motion sickness and associated factors in the population is needed to extrapolate the effects for future mobility systems. We conducted three surveys between 2015 and 2020, asking people questions about their experience with motion sickness in cars. Based on the responses of 1165 participants, gender and age showed a strong influence on the self-reported frequency of motion sickness. For deeper analysis, a logistic order regression model was used to estimate the frequency of motion sickness for different user typologies.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

WM-LES-Simulation of a Generic Intake Port Geometry

2018-06-18
Abstract Fluid mechanical design of the cylinder charge motion is an important part of an engine development. In the present contribution an intake port geometry is proposed that can be used as a test case for intake port flow simulations. The objective is to fill the gap between generic test cases, such as the backward facing step or the sudden expansion, and simulations of proprietary intake ports, which are barely accessible in the community. For the intake geometry measurement data was generated on a flow-through test bench and a wall-modeled LES-simulation using a hybrid RANS/LES approach for near-wall regions was conducted. The objective is to generate and analyze a reference flow case. Since mesh convergence studies are too costly for scale resolving approaches only one simulation was done, but on a very fine and mostly block-structured numerical mesh to achieve minimal numerical dissipation.
Journal Article

Vulnerability of FlexRay and Countermeasures

2019-05-23
Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
Journal Article

Visualization and Statistical Analysis of Passive Pre-chamber Knock in a Constant-volume Optical Engine

2023-10-20
Abstract This study investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0% to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37–43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited.
Journal Article

Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned

2019-12-18
Abstract Automated driving as one of the most anticipated technologies is approaching its market release in the near future. Since several years, the research in the automotive industry is largely focused on its development and presents well-engineered prototypes. The many aspects of this development do not only concern the function and its components itself, but also the proof of safety and assessment for its market release. It is clear that previous methods used for the release of Advanced Driver Assistance Systems are not applicable. In contrast to already released systems, automated driving is not restricted to a certain field of application in terms of driving scenarios it has to take action in. This results in an infeasible amount of required testing and unforeseeable scenarios the function can face throughout its lifetime. In this article, we show a scenario-based approach that promises to overcome those challenges.
Journal Article

Validation on Safety of the Intended Functionality of Automated Vehicles: Concept Development

2022-04-20
Abstract As automated driving technology is evolving quickly and becomes more widely deployed, it is essential to validate the Safety of the Intended Functionality (SOTIF) of Automated Vehicles (AVs) prior to mass production. In general, an exhaustive real-world scenario validation of AVs is considered infeasible due to excessive time consumption. Additionally, simulation tests alone are often regarded as inadequate since it is difficult to model the system and physical properties of vehicles with full fidelity. Therefore, a SOTIF validation method for AVs is proposed in this article, which consists of structure design and scenario determination. A mature, systematic, and complete set of testing and evaluation procedures is presented in structure design, and a scenario generation method is introduced in scenario determination. The SOTIF validation method takes advantage of both simulation tests and on-road tests.
Journal Article

Validation of Kinetic Mechanisms against Various Ignition Delay Data and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition Conditions

2021-09-21
Abstract Homogeneous Charge Compression Ignition (HCCI) is a promising advanced combustion concept with high efficiencies and low emissions. Chemical kinetic mechanisms and ignition delay correlations (IDCs) are often applied to simulate HCCI combustion. However, a large number of mechanisms and correlations are not developed specifically for HCCI conditions, i.e., lean mixtures and usually with significant residual gas fractions (RGF). To address this issue, a two-part study is conducted. First, experimental ignition delay time (IDT) data from literature under typical HCCI conditions is collected. Then, thirteen widely applied mechanisms for ethanol, natural gas, and primary reference fuel (PRF) blends of isooctane and n-heptane are validated by running constant-volume simulations. Their performance and accuracy are evaluated. Second, the mechanism with the highest accuracy for each fuel is used to generate IDCs for HCCI conditions.
Journal Article

Using Radio Technical Commission for Maritime Services Corrections in a Consumer-Grade Lane-Level Positioning System for Connected Vehicles

2023-05-08
Abstract Connected vehicle (CV) technology has the potential to greatly improve the safety, mobility, and environmental sustainability of traffic. Many CV applications require the vehicle position as input, which is primarily provided by global navigation satellite systems (GNSS). Although a large number of those applications (e.g., Intersection Movement Assist) require vehicle positioning to have lane-level accuracy, it has been shown that the type of positioning system typically used by CVs currently cannot provide consistent lane-level accuracy, even under open-sky conditions. In order to address this gap, we have evaluated an enhanced positioning system that adds little, if any, to the cost of the CV.
Journal Article

Using Adsorbents to Mitigate Biodiesel Influence on the Deterioration of Engine Oil

2020-08-11
Abstract This study focused on using adsorbents to suppress engine oil deterioration as a result of the influence of biodiesel. Engine oil performance is affected by the use of biodiesel that results in short period of oil drain interval. Neat base oil, 80% blended with biodiesel, was 20% thermo oxidatively aged. Magnesium aluminum hydroxycarbonate and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-buty-4-hydroxybenzyl)benzene were applied, and the formation of oligomers in the base oil-RME mixture was monitored. The adsorbents intercept the precursors of the aging procedure and, therefore, interfere with the aging process. The analysis with FTIR showed less to no formation of oligomers. About 90% reduction in the total acid number was observed, with about 90% reduction in viscosity increment. The adsorbents, therefore, have an enhanced influence on the oxidative stability of biodiesel and its blends.
Journal Article

Use of Solar Photovoltaic Energy Systems in Department of Transportation Facilities: A Review of Practice and Preliminary Assessment for Virginia Department of Transportation

2022-01-28
Abstract Renewable energy sources provide an excellent opportunity for state departments of transportation (DOTs) to benefit from a dual use of land while providing flexible, resilient, affordable, and environmentally responsible modes of generation. Solar photovoltaic (PV) systems are particularly useful in this regard. This study presents a literature review on the types of solar project partnerships, application of solar PV systems by DOTs in the United States (U.S.), solar energy potential, energy policies, and incentives in Virginia. In addition, a feasibility assessment of installing solar PV systems at six (6) Virginia DOT (VDOT)-owned sites is presented. The review of the literature indicated that twenty state DOTs have implemented or are developing solar projects using their facilities. The feasibility assessment showed the benefits of installing solar PV systems at VDOT facilities.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Understanding the Origin of Cycle-to-Cycle Variation Using Large-Eddy Simulation: Similarities and Differences between a Homogeneous Low-Revving Speed Research Engine and a Production DI Turbocharged Engine

2018-12-14
Abstract A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed single-cylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratified-charge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken.
Journal Article

Understanding Subsidies to Achieve Diesel Powertrain Financial Parity for Heavy-Duty Fuel Cell Electric Vehicles

2022-12-07
Abstract The development of a long-term sustainable hydrogen energy economy for commercial vehicle transportation will need to overcome key critical technical and logistics considerations in the near term. As compared to zero-emission powertrains, fossil-fuel-based powertrains provide mission flexibility and high uptime at a comparatively low total cost of ownership (TCO). While the incumbent carbon-intensive powertrains suffer from poor efficiency and are not sustainable to support global climate change initiatives in transportation decarbonization, techno-economic challenges continue to create complex barriers to the large-scale displacement of these with highly electrified powertrains architectures. This article specifically addresses opportunities that well-targeted subsidies would afford in achieving fuel cell electric powertrain financial parity with diesel powertrains in heavy-duty trucks (HDTs).
Journal Article

Understanding Real-World Variability of Hybrid Electric Vehicle Fuel Economy

2020-08-11
Abstract The variability of fuel economy (FE) is of significant importance as that of average FE to realize FE benefits of hybrid electric vehicles (HEVs) consistently by all users in the real world. Over the years, majority of the research has been focused on improving average FE overlooking the variability. Although in recent years few studies have been focused on the reduction of FE variability, no study has been concentrated to understand why certain design has lower FE variability as that of others. This article provides a detailed analysis to decipher the reasons for the FE variability in the real world. This study considered the optimum designs based on two established design optimization methodologies considering Toyota Prius non-plug-in hybrid as a base vehicle. This study analyses the impacts of the parameters of driving patterns and the operation of powertrains on FE variability.
X