Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
Technical Paper

Visualization of the Qualitative Fuel Distribution and Mixture Formation Inside a Transparent GDI Engine with 2D Mie and LIEF Techniques and Comparison to Quantitative Measurements of the Air/Fuel Ratio with 1D Raman Spectroscopy

2000-06-19
2000-01-1793
Mie-Scattering and laser induced exciplex fluorescence (LIEF) were used to visualize the distribution of liquid fuel and fuel vapor inside an optical accessible one-cylinder research engine with gasoline direct injection (GDI). Using a tracer which was developed especially for the environments of gasoline combustion engines, LIEF enables an extensive separation between liquid and vapor phase and delivers a signal proportional to the equivalence ratio. Simultaneous images of LIEF and Mie scattering proof the high quality of the phase separation using this tracer concept. The mixture formation process will be shown exemplary at one operation point with homogeneous load and another with stratified load. First results of determining the air/fuel ratio by means of linear Raman spectroscopy will be presented and compared with the two-dimensional qualitative distribution of the fuel vapor (LIEF).
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Vapor-Phase Structures of Diesel-Type Fuel Sprays: An Experimental Analysis

1998-10-19
982543
The vapor phase of an evaporating spray from a heavy-duty Diesel common-rail injection system has been investigated with an optical diagnostic technique based on linear Raman scattering, which has been extended to the application in fuel sprays. One-dimensional spatially resolved Raman measurements of the air/fuel-ratio have been performed in the spray region with high local and temporal resolution in an injection chamber at an air pressure of 4.5 MPa and at a temperature of 450°C. The influence of different parameters, such as rail pressure, nozzle geometry and injection duration on the temporal evolution of the local air/fuel-ratio in the vapor phase has been studied quantitatively, and results from a selected spatial location are compared. Furthermore, the effect of physical/chemical fuel properties on the evaporation dynamics has been investigated by performing measurements with two different fuels.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

The Behavior of Fuel Droplets on a Heated Substrate

2021-10-15
2021-01-5099
The processes of surface wetting and film evaporation play a major role in any application using liquid fuels. Since the behavior of entire multi-liquid films is influenced by many simultaneously occurring physical processes, exact modeling is not yet possible. In order to reduce the complexity and to determine the basic effects in the spreading and evaporation of multi-component films, this study was carried out by placing single 5 μl droplets on a heated metal surface. Various alkanes, ethanol, and mixtures, as well as real gasoline, were studied at surface temperatures between 69°C and 140°C. To describe the processes qualitatively and determine the time-dependent wetted surface area, the droplets were visualized using cameras. With the results, it was possible to determine the course of the wetted surface over time and to compare different liquids under varying surface temperatures.
Technical Paper

Systematic Investigation of Fuel Film Evaporation

2018-04-03
2018-01-0310
To meet future particulate emission limits is quite ambitious for gasoline engines working with direct injection. It was found that there is a relationship between the fuel deposited on the combustion chamber surfaces due to spray impingement and the soot emissions. To understand and avoid the fuel film formation, measurements of the fuel film thickness and mass are important. However, in practical applications fuel films in general are not always problematic as long as they evaporate in time before ignition. Therefore, a systematic investigation of the evaporation duration of fuel film resulting from spray/wall interaction using high-speed visualization was performed. The investigation focused on the influence of engine related operating parameters on the film evaporation duration under the typical homogeneously charged gasoline engines conditions.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Technical Paper

Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines

1996-10-01
961925
An experimental study was made to investigate the spray characteristics of high pressure fuel injectors for direct-injection gasoline engines. The global spray development process was visualized using two-dimensional laser Mie scattering technique. The spray atomization process was characterized by Phase Doppler particle analyzer. The transient spray development process was investigated under different fuel injection conditions as a function of the time after the fuel injection start. The effects of injector design, fuel injection pressure, injection duration, ambient pressure, and fuel property on the spray breakup and atomization characteristics were studied in details. Two clear counter-rotating recirculation zones are observed at the later stage or after the end of fuel injection inside the fuel sprays with a small momentum. The circumferential distribution of the spray from the large-angle injector is quite irregular and looks like a star with several wings projected out.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Self-Ignition Calculation of Diesel Spray

2012-04-16
2012-01-1262
This paper describes a computer simulation of Diesel spray formation and the locations of self-ignition nuclei. The spray is divided into small elementary volumes in which the amounts of fuel and fuel vapours, air, mean, maximum and minimum fuel droplet diameter are calculated, as well as their number. The total air-fuel and air-fuel vapour ratios are calculated for each elementary volume. The paper introduces a new criterion for determining self-ignition nuclei, based on assumptions that the strongest self-ignition probability lies in those elementary volumes containing the stoichiometric air ratio, where the fuel is evaporated or the fuel droplet diameter is equal to or lower than 0.0065 mm. The most efficient combustion in regard to consumption and emission will be in those elementary volumes containing stoichiometric air ratio, and fuel droplets with the lowest mean diameters. Measurements of injection and combustion were carried out in a transparent research engine.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Optical Investigations on Partially Premixed Diesel Combustion for Different Operating Parameters

2008-04-14
2008-01-0041
Combustion processes with partially or fully premixed cylinder load combined with self-ignition provide high combustion efficiency and low emissions of Nitrogen Oxides (NOx) and particulate matter at the same time. Since the number of diesel operated passenger cars is still rising, it would be interesting, if such a combustion concept can be realized in an ordinary DI-Diesel engine which is operated with conventional diesel fuel. In this study, the influence of nozzle geometry, Tintake, pTDC and injection timing on the functioning chain of combustion was analyzed in a transparent single-cylinder diesel engine equipped with a common rail injection system by means of optical measurement techniques. Simultaneously, different optical diagnostics (laser-based and non laser-based) were used to study the fuel distribution, ignition and combustion in the combustion chamber of the optically accessible diesel engine. The liquid fuel was visualized by Mie scattering at 532nm.
X