Refine Your Search

Topic

Search Results

Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-12-04
WIP
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-03-11
WIP
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2009-05-13
HISTORICAL
AIR5567
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2020-09-16
CURRENT
AIR5567A
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
Standard

Overpressurization Release Devices

2024-01-16
WIP
ARP1322D
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-07-11
CURRENT
AS5663A
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-05-09
HISTORICAL
AS5663
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2012-07-19
CURRENT
ARP5381A
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2006-03-17
HISTORICAL
ARP5381
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Environmental Performance Standard for Parts 23, 25, 27, and 29 Aircraft Wheels Brakes, and Wheel and Brake Assemblies

2021-04-27
WIP
AS6961
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for environmental conditions that wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 25, 27, and 29. The environmental requirements in this document shall be used in conjunction with other MPS defined in Technical Standard Orders for the applicable equipment.
Standard

Information on Parking Brake Systems

2020-09-16
CURRENT
AIR6441
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
Standard

Information on Electric Brakes

2019-02-15
CURRENT
AIR5937
This SAE Aerospace Information Report (AIR) describes the design, operation, and attributes of electrical braking systems for both military and commercial aircraft. At this time, the document focuses only on brakes utilizing electromechanical actuators (EMAs), as that is the present state of the art. As such, the discussions herein assume that EMAs can simply replace the hydraulic actuation portion of typical brake system leaving things such as the wheel and heat sink unchanged. Furthermore, the document provides detail information from the perspective of brake system design and operation. The document also addresses failure modes, certification issues, and past development efforts. Details on the design and control of electric motors, gear train design, ball or roller screw selection are available in the reference documents and elsewhere, but are outside the scope of this document.
Standard

Information on Brake-By-Wire (BBW) Brake Control Systems

2013-04-22
HISTORICAL
AIR5372
A panel of the SAE A-5A Committee prepared this SAE Aerospace Information Report (AIR). The document describes the design approaches used for current applications of Brake-by-Wire (BBW) control systems that are used on commercial and military airplanes. The document also discusses the experience gained during service in the commercial and military environments, and covers system, ergonomic, hardware, and development aspects. The treatment includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on systems that use the electro-hydraulic method of control. The overall range of implementations is briefly described in 2.3. Sections 3, 4, and 5 describe the electro-hydraulic method in detail.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2019-07-22
CURRENT
ARP1070E
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2014-11-11
HISTORICAL
ARP1070D
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control. It focuses on recommended practices specific to antiskid and its integration with the aircraft as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2, for generic aerospace best practices and requirements.
Standard

Automatic Braking Systems Requirements

2006-10-26
HISTORICAL
ARP1907A
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
X