Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 15771
Standard

electric Vertical Take Off and Landing (eVTOL) Emergency Lighting

2023-09-14
WIP
ARP8620
The purpose of this ARP is to provide criteria that will lead to and support existing regulatory standards of systems for UAM/AMM/eVTOL aircraft such that the emergency systems will facilitate egress under emergency conditions. Consideration is given to existing requirements of the FAA and to the recommendations of aircraft operators and those involved in the manufacture or use of the emergency lighting system. Occupant safety is the primary objective, with appropriate provisions for crew (pilot) system control taken into consideration. Consideration is also given to autonomous aircraft in which passengers are required to egress without the aid or direction of crew. The criteria established herein are intended to produce an emergency lighting system that will comply with the Federal and International Regulations. However, these recommendations are but one means of meeting the objective.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

Wrought and Cast Copper Alloys

2018-01-09
CURRENT
J461_201801
For convenience, this SAE Information Report is presented in two parts as shown below. To avoid repetition, however, data applicable to both wrought and cast alloys is included only in Part 1. Part I—Wrought Copper and Copper Alloys Types of Copper (Table 1) General Characteristics (Table 3) Electrical Conductivity Thermal Conductivity General Mechanical Properties (Table 10) Yield Strength Fatigue Strength Physical Properties (Table 2) General Fabricating Properties (Table 3) Formability Bending Hot Forming Machinability Joining Surface Finishing Color Corrosion Resistance Effect of Temperature Typical Uses (Table 3) Part II—Cast Copper Alloys Types of Casting Alloys Effects of Alloy Elements and Impurities General Characteristics (Table 11) Physical Properties (Table 12) Typical Uses (Table 11)
Standard

Wrought and Cast Copper Alloys

2002-12-20
HISTORICAL
J461_200212
For convenience, this SAE Information Report is presented in two parts as shown below. To avoid repetition, however, data applicable to both wrought and cast alloys is included only in Part 1. Part I—Wrought Copper and Copper Alloys Types of Copper (Table 1) General Characteristics (Table 3) Electrical Conductivity Thermal Conductivity General Mechanical Properties (Table 10) Yield Strength Fatigue Strength Physical Properties (Table 2) General Fabricating Properties (Table 3) Formability Bending Hot Forming Machinability Joining Surface Finishing Color Corrosion Resistance Effect of Temperature Typical Uses (Table 3) Part II—Cast Copper Alloys Types of Casting Alloys Effects of Alloy Elements and Impurities General Characteristics (Table 11) Physical Properties (Table 12) Typical Uses (Table 11)
Standard

Wrought Aluminum Applications Guidelines

2018-01-10
CURRENT
J1434_201801
This report approaches the material selection process from the designer's viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. "Applications criteria" along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

Wrenches; Flare Nut, Crowfoot, 6- and 12-Point Non-Distorting

2024-01-22
CURRENT
AS4167D
This SAE Aerospace Standard (AS) covers 6-point and 12-point flare nut crowfoot, flare nut wrenches, double end flare nut wrenches, combination box end and flare nut wrenches, combination open end and flare nut wrenches, and ratcheting flare nut wrenches that are designed with the following requirements: (a) non-distorting usage; (b) possessing the strength, clearances, and internal wrenching design to be used on hydraulic tube fittings that conform to the requirements of SAE J514 and ISO 8434-2; and (c) transmitting torque to tube fittings without bearing on the apex of fitting wrenching points. Inclusion of dimensional data in this document is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrenches; Flare Nut, Crowfoot, 12-Point Nondistorting

2004-01-23
HISTORICAL
AS4167A
This SAE Aerospace Standard (AS) covers 12-point open box end crowfoot, flare nut, double open box end, combination box and open box end, and ratcheting open box end wrenches that are designed with the following requirements: a Nondistorting usage b Possessing the strength, clearances, and internal wrenching design to be used on hydraulic tube fittings that conform to the requirements of SAE J514. c Transmitting torque to tube fittings without bearing on the apex of fitting wrenching points. Inclusion of dimensional data in this document is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrenches; Flare Nut, Crowfoot, 12 Point Non-distorting

2011-04-26
HISTORICAL
AS4167B
This SAE Aerospace Standard (AS) covers 12 point flare nut crowfoot, flare nut wrenches, double end flare nut wrenches, combination box and flare nut wrenches, and ratcheting flare nut wrenches that are designed with the following requirements: a. Non-distorting usage b. Possessing the strength, clearances, and internal wrenching design to be used on hydraulic tube fittings that conform to the requirements of SAE J514. c. Transmitting torque to tube fittings without bearing on the apex of fitting wrenching points. Inclusion of dimensional data in this document is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrenches; Flare Nut, Crowfoot, 12 Point Non-Distorting

2016-07-06
HISTORICAL
AS4167C
This SAE Aerospace Standard (AS) covers 12 point flare nut crowfoot, flare nut wrenches, double end flare nut wrenches, combination box and flare nut wrenches, and ratcheting flare nut wrenches that are designed with the following requirements: (a) Non-distorting usage; (b) Possessing the strength, clearances, and internal wrenching design to be used on hydraulic tube fittings that conform to the requirements of SAE J514; (c) Transmitting torque to tube fittings without bearing on the apex of fitting wrenching points. Inclusion of dimensional data in this document is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrench, Spanner

2021-07-28
CURRENT
AS6018A
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrench, Spanner

2013-05-28
HISTORICAL
AS6018
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wiring, Positioning, and Support Accessories

2010-05-12
HISTORICAL
AS23190A
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic and communication equipment, and in interconnection systems.
X