Refine Your Search

Topic

Author

Search Results

Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

Wheel Nut Seat System Test Procedures and Performance Requirements for Passenger Cars and Light Trucks

2012-07-20
HISTORICAL
J2316_201207
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for nut seat system strength of wheels intended for normal highway use on passenger cars, light trucks, (except dual wheels, which are covered by SAE J1965) and multipurpose passenger vehicles. The nut seat system includes the wheel, wheel bolts, and wheel nuts as applicable. Many factors must be considered in design and validation of wheel attachments for each specific vehicle. The individual components should be evaluated per the SAE standards referenced.
Standard

Wheel Nut Seat Strength

2020-04-17
HISTORICAL
J2315_202004
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
Standard

Wheel Nut Seat Strength

2015-12-17
HISTORICAL
J2315_201512
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
Standard

Wheel End Assembly and Axle Spindle Interface Dimensions—Truck and Bus

2005-03-21
HISTORICAL
J2475_200503
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, seal and wheel hub. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, R, N and P. SAE configurations FC, K, L, U, and W are not included, but may be added in the future.
Standard

Wheel End Assembly and Axle Spindle Interface Dimensions—Truck and Bus

2008-08-22
HISTORICAL
J2475_200808
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, seal and wheel hub. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, U, W, R, N and P.
Standard

Wheel End Assembly and Axle Spindle Interface Dimensions—Commercial Vehicles

2000-01-24
HISTORICAL
J2475_200001
This SAE Recommended Practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include bearing cones, bearing spacers, and wheel hubs. This document is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, R, N, and P. SAE configurations FC, FL, K, L, U, and W are not included, but may be added in the future.
Standard

Wheel End Assembly and Axle Spindle Interface Dimensions - Truck and Bus

2020-02-13
CURRENT
J2475_202002
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, spindle threads, bearing cones, bearing spacer, seal, and wheel hub. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W.
Standard

Wheel End Assembly and Axle Spindle Interface Dimensions - Truck and Bus

2014-07-30
HISTORICAL
J2475_201407
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, seal and wheel hub. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W.
Standard

Welding, Resistance: Spot and Seam

2007-11-21
CURRENT
AMSW6858B
This specification covers requirements for resistance spot and seam welding of the following metals and their alloys. Group 1 - Aluminum and magnesium Group 2 - Iron, nickel, and cobalt Group 3 - Titanium
Standard

Welding, Resistance: Spot and Seam

1999-07-01
HISTORICAL
AMSW6858
This specification covers requirements for resistance spot and seam welding of the following metals and their alloys. Group 1 - Aluminum and magnesium Group 2 - Iron, nickel, and cobalt Group 3 - Titanium
Standard

Welding, Resistance: Spot and Seam

2005-10-11
HISTORICAL
AMSW6858A
This specification covers requirements for resistance spot and seam welding of the following metals and their alloys. Group 1 - Aluminum and magnesium Group 2 - Iron, nickel, and cobalt Group 3 - Titanium
Standard

Welding, Electron-Beam

2022-01-21
CURRENT
AMS2681B
This specification defines the procedures and requirements for joining metals and alloys using the electron-beam (EB) welding process.
X