Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Space Plants in the Classroom

2004-07-19
2004-01-2417
A common question for students to ask educators is “When am I ever going to use this?” An excellent way to answer that question is to demonstrate how interrelated many subjects are. At ORBITEC in Madison, WI, we are developing systems to help teachers demonstrate the exciting interrelationships of science, math and technology using activities related to growing plants in space. We are developing two portable plant growth systems that integrate multiple disciplines, enriching students’ classroom experiences. Each portable growth unit is based on similar principles. The Space Garden and Biomass Production Education System (BPES) are growth units for indoor use that utilize a bellows technology to create a greenhouse-like environment. The Space Garden is a personal growth unit that a student can use individually while the BPES will be 0.25 m2, allowing larger-scale experimentation. The Space Garden will be best used in classrooms of grades four through seven.
Technical Paper

Plant Research Unit Control Architecture Overview

2004-07-19
2004-01-2392
High reliability and system flexibility are driving factors in the Plant Research Unit development. Proper selection of the unit electrical and software control architecture is fundamental to achieving these goals. Key features of the PRU control design include the use of a real time operating system for main process control, dynamic power management, a distributed control architecture and subsystem modularity. The chosen approach will allow future modifications and improvements to be incorporated at the subsystem level with minimal impact to the unit overall. Hardware fault tolerance and redundancy enhance system reliability.
Technical Paper

Biomass Production System Hardware Performance

2003-07-07
2003-01-2484
The Biomass Production System, recently flown on the ISS for 73 days, demonstrated significant advancements in functional performance over previous systems for conducting plant science in microgravity. The Biomass Production System (BPS) was the first flight of a system with multiple, independently controlled, plant growth chambers. Each of four chambers was controlled separately with respect to temperature, humidity, light level, nutrient level, and CO2, and all were housed in a double Middeck locker-sized payload. During the mission, each of the subsystems performed within specification. This paper focuses on how the performance of the BPS hardware allowed successful completion of the preflight objectives.
Technical Paper

AAH, The Latest Development in Microgravity Animal Research

2005-07-11
2005-01-2784
The Advanced Animal Habitat (AAH) represents the next generation of Space Station based animal research facilities. Building upon previously developed flight hardware and experience, the AAH offers greatly enhanced system capabilities and performance. The design focuses upon the creation of a robust and flexible platform capable of supporting present and future experimental needs. A modular packaging and distributed control architecture leads to increased system adaptability and expandability. The baseline configuration includes group housing capability for up to six rats with automated food and water delivery as well as waste collection. Animals are continuously monitored with three cameras during both day and night cycles. The animals can be accessed while on-orbit through the Life Sciences Glovebox to perform a wide variety of experimental protocols.
X