Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of Geometric Field of View and Tunnel Design for Perspective Flight-Path Displays

1992-07-01
921131
Previous studies have shown that use of flight-path displays may lead to increased situational awareness during final approach and landing. However, there are a number of research issues which remain to be investigated concerning the optimum design of a perspective flight-path display. The purpose of this paper is to report the results of a study which investigated the relationship between the geometric field of view, number of tunnels in the display, and flight-path complexity on the subject's ability to fly a computer-simulated aircraft during final approach. Implications of the results for the design of perspective flight-path displays are discussed.
Technical Paper

Exploring the Space of Human Body Shapes: Data-driven Synthesis under Anthropometric Control

2004-06-15
2004-01-2188
In this paper, we demonstrate a system for synthesizing high-resolution, realistic 3D human body shapes according to user-specified anthropometric parameters. We begin with a corpus of whole-body 3D laser range scans of 250 different people. For each scan, we warp a common template mesh to fit each scanned shape, thereby creating a one-to-one vertex correspondence between each of the example body shapes. Once we have a common surface representation for each example, we then use principal component analysis to reduce the data storage requirements. The final step is to relate the variation of body shape with concrete parameters, such as body circumferences, point-to-point measurements, etc. These parameters can then be used as “sliders” to synthesize new individuals with the required attributes, or to edit the attributes of scanned individuals.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Technical Paper

Automatic Wildfire Detection and Simulation using Optical Information from Unmanned Aerial Systems

2015-09-15
2015-01-2474
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material.
Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
X