Refine Your Search

Topic

Author

Affiliation

Search Results

Article

magniX and AeroTEC to fly all-electric eCaravan May 28

2020-05-21
Mobility is in the midst of an electric revolution, propelled by industry innovators such as magniX. Headquartered in Redmond, Washington, the magniX team is focused on revolutionizing electric motors for commercial aviation applications.
Technical Paper

YF-23A HYDRAULIC MANAGEMENT SYSTEM

1992-10-01
922028
The YF-23A Advanced Tactical prototype Fighter was a revolutionary statically unstable, twin engine aircraft that cruised at supersonic speeds without afterburner and was designed to out maneuver opponents at subsonic and supersonic speeds. Combining these capabilities into a chosen aircraft configuration demanded a flight control hydraulic system of unprecedented power and performance. Increased system reliability, and reduced maintenance also presented a challenging system design. The YF-23A's unique flight and maneuvering envelope required high surface rates and large actuator excursions at low flight speeds, as well as power to generate increased hinge moments at supersonic speeds. To achieve these specifications, Northrop developed a hydraulic system that utilized flow conservation and prioritization techniques. The hydraulic system configuration was maintained by using hydrologic, as well as electronic control.
Technical Paper

XMM - RGS Cryogenic Detector Housing

1994-06-01
941480
The Reflection Grating Spectrometer experiment (RGS) on the ESA corner stone X-Ray Multi-Mirror Mission (XMM) uses charge coupled devices (CCD) as detectors. Thermal requirements are the main driver for the layout of the detector housing. Parasitic heat inputs stem primarily from radiative coupling and from conduction over the structural support. Improvements in the design of the electro optical model (EOM) over the bread board model (BBM) resulted in a system that guarantees a CCD temperature of -130 °C at the end of the mission while not precluding the possibility to heat the detectors as high as +130°C which might be useful for annealing the CCDs.
Technical Paper

XM Satellite Radio Technology Fundamentals

2001-03-05
2001-01-1328
In October of 1997, the Federal Communications Commission (FCC) granted two national satellite radio licenses. The FCC allocated 25 MHz of the electromagnetic spectrum (2.3 GHz frequency band) for satellite digital broadcasting to two companies: 12.5 MHz to XM Satellite Radio and 12.5 MHz to Sirius Satellite Radio. This paper is an overview of the XM Satellite Radio technology. Four major components of the overall Network are described: a) The ground segment; b) The space segment; c) The terrestrial repeater segment and the d) The technology segment. Mobile antenna design challenges are also being addressed and optimum antenna configurations are presented.
Technical Paper

XM Satellite Radio Technology & Content Evolution

2006-10-16
2006-21-0068
XM Satellite Radio launched its nationwide service in September of 2001. With 6.5 million subscribers at the end of the first quarter of 2006, XM is one of the fastest growing audio formats and entertainment services. This paper addresses XM's technology and content evolution, primarily for the radio unit and the signaling protocols, from the early years to the present time, and the applicability of this technology in fostering exciting new infotainment services. The radio architecture includes an antenna, an RF tuner module, a baseband chipset and a microprocessor. All of these subsystems underwent a complete transformation in the past four years from a size perspective, capability and cost. Specifically the following phases of the radio platform are addressed: a) Phase 1: The early years; b) Phase 2: The invention of the Plug and Play ; c) Phase 3: Connect and Play ; d) Phase 4; The wearable; e) Phase 5: Infotainment convergence of audio plus data services.
Technical Paper

World's First Delta Wing Airplane Convair/Air Force XF-92A

2000-10-10
2000-01-5515
The first flight of a delta wing aircraft took place in the United States at the Muroc AFB Flight Test Center on 18 September 1948. The aircraft, Convair No. 7002, Air Force S/N 46-682 and designated the XF-92A was piloted by Convair's Manager of Flight Research, E.D. “Sam” Shannon. The author witnessed this historic flight as a Flight Test Engineer on the project. Studies and wind tunnel tests for a supersonic interceptor were conducted at the Vultee Division of Consolidated Vultee Aircraft Corporation (Convair) in 1945. These studies led to the selection of the 60° delta wing plan form. This paper reviews the major differences between the thin wing XF-92A and the thick wing DM-1 glider (never flown) designed by Alexander M. Lippisch in Germany at the close of World War II. The XF-92A used a fully hydraulic irreversible control system for its elevons and rudder. The only airplanes up to this time with fully hydraulic controls were the Northrop XB-35 and the YB-49 flying wings.
Standard

Wiring, Positioning, and Support Accessories

2010-05-12
HISTORICAL
AS23190A
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic and communication equipment, and in interconnection systems.
Standard

Wiring, Positioning, and Support Accessories

2020-11-03
CURRENT
AS23190D
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic, and communication equipment, and in interconnection systems.
Standard

Wiring Aerospace Vehicle

2023-01-13
CURRENT
AS50881H
This specification covers all aspects in Electrical Wiring Interconnection Systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods.
Standard

Wiring Aerospace Vehicle

2000-04-01
HISTORICAL
AS50881A
This specification covers all aspects from the selection through installation of wiring and wiring devices used in aerospace vehicles. Aerospace vehicles include airplanes, helicopters, lighter-than-air vehicles, and missiles.
Standard

Wiring Aerospace Vehicle

2003-08-06
HISTORICAL
AS50881B
This specification covers all aspects from the selection through installation of wiring and wiring devices used in aerospace vehicles. Aerospace vehicles include airplanes, helicopters, lighter-than-air vehicles, and missiles.
Standard

Wiring Aerospace Vehicle

2006-10-05
HISTORICAL
AS50881C
This specification covers all aspects from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2010-07-15
HISTORICAL
AS50881D
This specification covers all aspects from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2013-12-09
HISTORICAL
AS50881E
This specification covers all aspects in electrical wire interconnection systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2015-05-29
HISTORICAL
AS50881F
This specification covers all aspects in electrical wire interconnection systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2019-08-06
HISTORICAL
AS50881G
This specification covers all aspects in Electrical Wiring Interconnection Systems (EWIS) from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods.
Standard

Wire, Electrical, Solderless Wrap, Insulated and Uninsulated, General Specification For

2011-07-18
CURRENT
AS81822A
This specification covers both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or automatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
Standard

Wire, Electrical, Solderless Wrap, Insulated and Uninsulated, General Specification For

2004-06-22
HISTORICAL
AS81822
This specification covers both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or automatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
X