Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Condensation – Why it Needs to be Addressed in Every Aircraft”

2003-09-08
2003-01-3000
A wide body aircraft carries almost a half–ton of water and ice between the cabin and skin of the aircraft. The water can get on wires and connectors, which can cause electrical problems, cause corrosion and rust, and, eventually, “rain in the plane”. The speaker is the CEO of CTT Systems that has developed a system that solves the condensation by using dry air. The speaker will discuss how condensation can be prevented and how airlines can also save maintenance costs in the process. This topic is relevant for the attendees at the Aerospace Expo, as they are decision makers who need to be aware of this issue. It is also important for the MRO shows as the attendees are on the front lines of dealing with this problem.
Technical Paper

“A Dry Aircraft is a Safer Aircraft – Beating Condensation by Using Dry Air”

2003-09-08
2003-01-3017
The airline industry seems to be providing more leisure features on planes like inflight entertainment, Internet access and Digital TV, but it seems the airline industry has ignored the issue of excess condensation on aircraft, which had plagued carriers since the birth of the airline industry. How safe are passengers when a wide body aircraft carries in excess almost a half ton of water and ice between the cabin and skin of the aircraft? Besides the added weight straining the aircraft, excess condensation soaks wires and connectors which can cause electrical shorts. There have been instances of emergency doors frozen shut, locked by ice stemming from excess water dripping inside the plane. Extra water also causes “rain-in-the-plane”, an issue that has gained national attention and causes passenger discomfort. It's time for the industry to address what has become a serious issue.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

srv-k Status Aboard the International Space Station During Missions 15 and 16

2008-06-29
2008-01-2191
The paper summarizes the experience gained on the ISS water management system during the missions of ISS-1 through ISS-16 (since November 2 2000, through December 31, 2007). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on a board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine, water from a carbon dioxide reduction system and hygiene water is shown.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Zero-G Water Selection Separator: A Performance Tradeoff

1969-02-01
690642
This paper presents a trade-off study to select a water separator system for a 3-man, 140-day, zero-g mission. Included is a summary of feasible concepts, a compilation of data on existing hardware, and a comparison of the performance characteristics of each with respect to the overall system. Six approaches to zero-g water separation were considered and are discussed: hydrophobic/hydrophilic screens; integrated condenser-water separators; centrifugal separators; cellular sponges; vortex separators; and elbow separators. Some of these techniques have high-performance characteristics with regard to water removal efficiency. However, when reduced to hardware, these same techniques may not integrate well with the overall system. The system selected was the integrated condenser-water-separator. This system requires no power, has no moving parts, and has a very small envelope.
Technical Paper

Zero-G Simulation using Neutral Buoyancy

1989-07-01
891529
For human beings who have been reared on the earth with its 1 G gravitational field, the condition of weightlessness is a world with which we are unfamiliar. Even if the layout and equipment configuration of a spacecraft designed to compensate for operation under Zero-G conditions, there are some things which are not effective under actual weightless conditions. In the design of a manned spacecraft, it is necessary to accumulate design data on human performance in a weightless condition, then to undertake design evaluations and verification under weightless conditions. In this paper, testing for the purpose of evaluating the effectiveness of Zero-G simulation using neutral buoyancy, conducted first of all in Japan, and recommendations on the equipment and Facilities required to conduct such simulations, are described.
Technical Paper

Zero Gravity Phase Separator Technologies - Past, Present and Future

1992-07-01
921160
Spacecraft life support equipment is often challenged with two phase flow, where liquid and gas exist together. In the zero gravity environment of an orbiting spacecraft, the behavior of a liquid/gas interface is dominated by forces not usually observed in one “G” due to the overwhelming effects of gravity. The normal perceptions no longer apply. Water does not run down hill and bubbles do not rise to the surface. Surface energy, capillary forces, wetting characteristics and momentum effects predominate. Techniques and equipment have been developed to separate the liquid/gas mixture into its constituent parts with various levels of efficiency and power consumption.
Technical Paper

ZERO-ODP REFRIGERANTS FOR LOW TONNAGE CENTRIFUGAL CHILLER SYSTEMS

1996-05-01
961320
This paper investigates the use of several zero-ozone depleting potential (zero-ODP) HFC refrigerants, including HFC-134a, HFC-227ca, HFC-227ea, HFC-236ea, HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb, for centrifugal chiller applications. We took into account the thermodynamic properties of the refrigerant and aerodynamic characteristics of the impeller compression process in this evaluation.. For a given operating temperature lift, there are significant differences in the pressure ratio required by each refrigerant and this variation in pressure ratio directly affects compressor size, efficiency, and performance. A comparison of the HFC refrigerant candidates with CFC-114 shows that HFC-236ea, HFC-227ca and HFC-227ea are viable alternatives for centrifugal water chillers. HFC-236ea has properties closest to CFC-114, and will result in comparible performance, but will require a slightly larger impeller and a purge system.
Technical Paper

XB-70A Laboratory for Progress

1966-02-01
660276
The development of the XB-70 research aircraft produced advancements in many fields of technology. This paper covers a few of these advancements in the areas of materials, equipment, and manufacturing. These include honeycomb construction, PH 15-7 alloy steel, vacuum melted H-11 steel, equipment capable of withstanding high temperatures, chemical milling of many different alloys, miniaturized welding equipment, and exothermic brazing techniques.
Technical Paper

XB-70 Ground Servicing and Safety Precautions

1966-02-01
660275
Planning for ground servicing and maintenance started in the proposal phase and has been followed by test program experience with the XB-70 Mach 3 air vehicle. Servicing and associated safety requirements are summarized. Discussion of maintenance and support actions includes mention of equipment provided to meet the requirements. Preflight, postflight, and periodic operations are outlined, along with some indication of changes that resulted when plans were put into practice. The demands of a high performance flight test air vehicle limit movements toward simplification.
Technical Paper

X-Ray Rocking Curve Analysis of the Aging and Deformation Characteristics in the Al-Li Alloy

1989-04-01
891057
A non-destructive x-ray technique, the double crystal diffractometer method, is presented as a tool to investigate the aging and deformation behavior of the Al-Li alloy. This is a sensitive method for measuring the strain and dislocation density within individual grains through the x-ray rocking curve. In addition, models were developed to describe the aging and deformation characteristics of this alloy.
Technical Paper

X-Ray - A Necessary Tool for Detecting Incipient Structural Failures in Service Aircraft

1964-01-01
640510
X-ray is an indispensable aid in locating and determining the extent of incipient failures in structure which is inaccessible by position or covered by multiple layers of metal. It is also the most feasible method for checking oil coolers for contamination; bonded honeycomb panels for water; fuel lines for erosion; and with a 360 deg emission tube, fuselage frames for structural integrity without removing the interior upholstery and panels from the passenger compartment or cargo compartments.
Standard

Wrenches; Flare Nut, Crowfoot, 6- and 12-Point Non-Distorting

2024-01-22
CURRENT
AS4167D
This SAE Aerospace Standard (AS) covers 6-point and 12-point flare nut crowfoot, flare nut wrenches, double end flare nut wrenches, combination box end and flare nut wrenches, combination open end and flare nut wrenches, and ratcheting flare nut wrenches that are designed with the following requirements: (a) non-distorting usage; (b) possessing the strength, clearances, and internal wrenching design to be used on hydraulic tube fittings that conform to the requirements of SAE J514 and ISO 8434-2; and (c) transmitting torque to tube fittings without bearing on the apex of fitting wrenching points. Inclusion of dimensional data in this document is not intended to imply that all of the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrenches, Hand, Twelve Point, High Strength, Thin Wall

2023-03-20
CURRENT
AS954H
This SAE Aerospace Standard (AS) covers high strength thin wall (commercial) sockets, universal sockets, box wrenches and torque adaptors which possess the strength, clearances, and internal wrenching design so configured that, when mated with bi-hexagonal fasteners conforming to the requirements of AS870 for inch sizes and ISO 4095 for metric sizes, they shall transmit torque to the fastener without bearing on the outer 5% of the fastener's wrenching points. Inclusion of dimensional data in this document is not intended to imply that all the products described herein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes. The dimensional limits of box and combination wrench lengths have been established to provide configuration control for tool storage applications.
Standard

Wrench, Spanner

2021-07-28
CURRENT
AS6018A
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
X