Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Spacematic” Monitoring System

1998-09-15
982138
Pneumatic, manually operated, drilling machines are used to produce a significant proportion of all holes drilled during wing manufacture. Drilling machine design and the manual drilling process has not changed significantly in decades. By employing miniature, low power, electronics and interfacing techniques, a monitoring system has been developed. This system enables improved process control of the manual drilling operation. Machine calibration management, measurement of drill performance, jig drilling error control and asset management are some of the benefits attainable. This project will hopefully encourage others to discover the potential for improving historically established processes, by employing modern technological developments.
Technical Paper

“Phoenix”- A Polyester-Film Inflatable Man-Powered Aircraft

1984-02-01
840028
This paper describes some of the design solutions adopted in solving two major problems besetting man-powered aircraft in use: that of breakage and storage. It describes work leading up to the building and testing of “Phoenix”, a man-powered aircraft with a polyester-film inflatable wing. The paper deals mainly with aspects relating to the wing design and construction.
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Melmoth”-An Experimental Private Aircraft

1975-02-01
750546
“Melmoth,” an amateur-designed and built light airplane, has a number of features unusual in general aviation aircraft, aiming to combine comfort, high cruising speed, aerobatic capability and transoceanic range in a single compact machine. Among these are high wing loading, large internal fuel capacity, variable aileron incidence, double-slotted Fowler flap, automatic fuel tank switching, internal cowl flaps, and an all-flying T-tail.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

1994-10-01
942132
The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

some thoughts on optimum combinations of Wings and Vertical Thrust Generators in VTOL Aircraft

1959-01-01
590040
THIS PAPER reviews VTOL problems, indicating probable ways toward optimization of whole lifting and propelling system. Also discussed are the power and thrust requirements for optimum cruise and vertical take-offs and landings for propeller-driven and jet-propelled aircraft. Three speed ranges offer the most promise for VTOL aircraft, if thrust requirements for cruise and take-off are to match. The ranges are centered around Mach numbers of 0.65, 0.8, and 2.0+. There is a possibility of overcoming the high thrust needed for hovering by use of bypass augmentation, special hovering jets, or favorable ground effects, the author reports.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

eVTOL Flight: Forecasting Future Training Requirements in an Emerging Aviation Market

2023-03-07
2023-01-1009
Most emerging electric vertical takeoff and landing (eVTOL) aircraft feature distributed electric propulsion systems with automation features that simplify operations for future pilots. In theory, increasing automation levels should reduce pilot workload, decrease training time, and improve performance consistency. Air Education and Training Command Detachment 62 (AETC/Det 62) sought to test this theory as part of a larger study involving 70+ participants, two eVTOL platform simulators, and multimodal assessments of flight performance. In the present report, we compared expert ratings of flight performance of pilots who do not have prior pilot experience or training (herein referred to as ab initio pilots; i.e., 0 flight hours) to those of experienced pilots (i.e., >300 flight hours) in either a semi-automated or highly-automated simulated eVTOL platform.
Technical Paper

ZENITH: A Nano-Satellite for Atmospheric Monitoring

2015-09-15
2015-01-2395
This paper describes the ZENITH Nano-Satellite cum planetary atmospheric entry vehicle, called CanSat, the first Nano-Satellite project that has been developed by Delhi Technological University (Formerly Delhi College of Engineering), India. The satellite will function for monitoring the concentrations of various gases in the atmosphere. For this, the satellite consists of arduino microcontroller interfaced with the various Micro-electromechanical system (MEMS) gas sensors for measuring the concentrations of various gases such as carbon dioxide, carbon monoxide, methane, nitrous oxides, ozone, etc. The data obtained from the CanSat will be transmitted to the ground station where all the data will be stored and also the locations will be stored using GPS sensor. The academic goal of this project is to recruit students to the field of space science and technology.
Video

Your Bridge to Success in the Real World

2018-07-25
Students share how SAE Membership has opened doors for their careers, provided educational opportunities and hands-on experiences that has helped them to become a better engineer.
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

X—31A

1987-07-01
871346
MBB and Rockwell, under DARPA/NAVAIR and GMOD contract, are currently designing an experimental aircraft which will be dedicated to demonstrate “enhanced fighter maneuverability” (EFM) and supermaneuverability in particular. The aircraft is designed to break one of the last barriers left in aviation, the stall barrier. It will be able to perform tactical maneuvers up to 70° angle of attack and thus achieve very small radii of turn. Such highly instantaneous 3-dimensional maneuvers are of significant tactical value in future air combat with all aspect weapons. Key to the penetration into this unexplored flight regime is thrust vectoring in pitch and yaw. This feature is also used to enhance agility in critical flight conditions and to enhance the decoupling of fuselage aiming and flight path control as required for head-on gun firing.
Technical Paper

XV-15 Tilt Rotor Test Progress Report

1977-02-01
770953
In a continuing effort to expand the versatility of their aircraft, VTOL designers have for many years tried to combine the desirable features of various concepts into a single aircraft. This is a formidable task and most efforts have met with limited success. This paper explores the need for an aircraft combining the efficient VTOL capability of a helicopter with the efficient high speed characteristics of a fixed wing turboprop. The ability of the tilt rotor concept to fill this requirement and examples as to its potential usefulness in both military and civil missions, is discussed. The history of the concept and the status of the current Army/NASA/Bell XV-15 program and its role in proving the viability of the concept are reviewed.
Technical Paper

XC-142A Control System

1967-02-01
670571
Five XC-142 aircraft have been manufactured to provide operational prototypes of a V/STOL tactical transport for tri-service evaluation. This paper presents a description of the flight control and stability augmentation systems. Special emphasis is placed on the programmed functions which are characteristic of VTOL airplanes. Proposed changes in the control systems of production models of the C-142 are identified, and the simulation and flight test programs are outlined.
X