Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Article

Zwick Roell provides flexible materials testing over a wide temperature range

2018-10-19
To enable the tests required for development work to be performed with maximum efficiency, the Zwick Roell Group (ZwickRoell) – a global supplier of materials testing machines based out of Ulm, Germany – developed a materials testing machine that can be equipped with both a temperature chamber and a high-temperature furnace.
Technical Paper

Zero Carbon Emission Aviation Fuel Technology Review - The Hydrogen Pathway

2024-01-08
2023-36-0029
The commercial aviation currently accounts for roughly 2.5 % of the global CO2 emissions and around 3.5% of world warming emissions, taking into account non CO2 effects on the climate. Its has grown faster in recent decades than the other transport modes (road, rail or shipping), with an average rate of 2.3%/year from 1990 to 2019, prior to the pandemic. Moreover, its share of Greenhouse (GHG) emissions is supposed to grow, with the increasing demand scenario of air trips worldwide. This scenario might threaten the decarbonization targets assumed by the aviation industry, in line with the world efforts to minimize the climate effects caused by the carbon emissions. In this context, hydrogen is set as a promising alternative to the traditional jet fuel, due to its zero carbon emissions.
Technical Paper

YF-23A HYDRAULIC MANAGEMENT SYSTEM

1992-10-01
922028
The YF-23A Advanced Tactical prototype Fighter was a revolutionary statically unstable, twin engine aircraft that cruised at supersonic speeds without afterburner and was designed to out maneuver opponents at subsonic and supersonic speeds. Combining these capabilities into a chosen aircraft configuration demanded a flight control hydraulic system of unprecedented power and performance. Increased system reliability, and reduced maintenance also presented a challenging system design. The YF-23A's unique flight and maneuvering envelope required high surface rates and large actuator excursions at low flight speeds, as well as power to generate increased hinge moments at supersonic speeds. To achieve these specifications, Northrop developed a hydraulic system that utilized flow conservation and prioritization techniques. The hydraulic system configuration was maintained by using hydrologic, as well as electronic control.
Article

X marks the spot

2018-03-22
LiquidPiston Inc. has developed a new engine that can run on multiple fuels, including diesel, jet fuel, and gasoline. This platform uses an optimized thermodynamic cycle and a new rotary engine architecture and could increases flight endurance over conventional UAV engines by greater than 50%.
Technical Paper

World's First Delta Wing Airplane Convair/Air Force XF-92A

2000-10-10
2000-01-5515
The first flight of a delta wing aircraft took place in the United States at the Muroc AFB Flight Test Center on 18 September 1948. The aircraft, Convair No. 7002, Air Force S/N 46-682 and designated the XF-92A was piloted by Convair's Manager of Flight Research, E.D. “Sam” Shannon. The author witnessed this historic flight as a Flight Test Engineer on the project. Studies and wind tunnel tests for a supersonic interceptor were conducted at the Vultee Division of Consolidated Vultee Aircraft Corporation (Convair) in 1945. These studies led to the selection of the 60° delta wing plan form. This paper reviews the major differences between the thin wing XF-92A and the thick wing DM-1 glider (never flown) designed by Alexander M. Lippisch in Germany at the close of World War II. The XF-92A used a fully hydraulic irreversible control system for its elevons and rudder. The only airplanes up to this time with fully hydraulic controls were the Northrop XB-35 and the YB-49 flying wings.
Standard

Wiring, Positioning, and Support Accessories

2010-05-12
HISTORICAL
AS23190A
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic and communication equipment, and in interconnection systems.
Standard

Wiring, Positioning, and Support Accessories

2020-11-03
CURRENT
AS23190D
AS23190 is a procurement specification that covers a series of plastic and metal components and devices used for the tying, positioning, and supporting cable, cable assemblies, wire, and wire bundles in electrical, electronic, and communication equipment, and in interconnection systems.
Standard

Wire, Electrical, Solderless Wrap, Insulated and Uninsulated, General Specification For

2011-07-18
CURRENT
AS81822A
This specification covers both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or automatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
Standard

Wire, Electrical, Solderless Wrap, Insulated and Uninsulated, General Specification For

2004-06-22
HISTORICAL
AS81822
This specification covers both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or automatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
Standard

Wire, Electrical, Fluoropolymer-Insulated, Copper or Copper Alloy

2006-12-05
HISTORICAL
AS22759A
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials.
Standard

Wire, Electrical, Fluoropolymer-Insulated, Copper or Copper Alloy

2001-07-01
HISTORICAL
AS22759
This specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable specification sheet. The fluoropolymer insulation of these wires may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials.
Standard

Wire, Electrical, Fluoropolymer-Insulated, Copper or Copper Alloy

2018-05-16
CURRENT
AS22759D
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7).
Standard

Wire, Electrical, Fluoropolymer-Insulated, Copper or Copper Alloy

2011-09-06
HISTORICAL
AS22759B
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials.
Standard

Wire, Electrical, Fluoropolymer-Insulated, Copper or Copper Alloy

2014-10-27
HISTORICAL
AS22759C
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7).
Standard

Wire, Electrical, Crosslinked Polyalkene, Crosslinked Alkane-Imide Polymer, or Polyarylene Insulated, Copper or Copper Alloy

2019-07-08
CURRENT
AS81044B
AS81044 covers single conductor electric wires made as specified in the applicable detail specification with tin-coated, silver-coated, or nickel-coated copper or copper alloy conductors insulated with crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene. The crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene may be used alone or in combination with other insulation materials as specified in the detail specification.
Standard

Wire, Electrical, Crosslinked Polyalkene, Crosslinked Alkane-Imide Polymer, or Polyarlyene Insulated, Copper or Copper Alloy

2011-08-11
HISTORICAL
AS81044A
This specification covers single conductor electric wires made as specified in the applicable specification sheet with tin-coated, silver-coated, or nickel-coated copper or copper alloy conductors insulated with crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene. The crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene may be used alone or in combination with other insulation materials as specified in the specification sheet.
X