Refine Your Search

Topic

Author

Search Results

Technical Paper

Track Bar Bracket Development with the Help of Advanced Optimization Techniques

2016-04-05
2016-01-1387
The advanced Optimization techniques help us in exploring the light weight architecture. This paper explains the process of designing a lightweight track bar bracket, which satisfies all durability performance targets. The mounting locations and load paths are critical factors that define the performance and help in the development of weight efficient structure. The process is to identify the appropriate bolt location through Design of Experiment (DOE) and topology based studies; followed by section and shape optimization that help to distribute material in a weight efficient manner across the structure. Load path study using topology optimization is performed to identify the load path for durability load cases. Further shape optimization is done using hyper study to determine the exact thickness of the webs and ribs. A significant weight reduction from the baseline structure is observed. This process may be applicable for all casting components.
Technical Paper

Three-Dimensional Thermal Simulation of a Hybrid Vehicle with Energy Consumption Estimation and Prediction of Battery Degradation under Modern Drive-Cycles

2023-04-11
2023-01-0135
As more electric vehicles (BEV, HEV, PHEV, etc.) are adopted in the upcoming decades, it is becoming increasingly important to conduct vehicle-level thermal simulations under different drive-cycle conditions while incorporating the various subsystem thermal losses. Thermal management of the various heat sources in the vehicle is essential both in terms of ensuring passenger safety as well as maintaining all the subsystems within their corresponding safe temperature limits. It is also imperative that these thermal simulations include energy consumption prediction, while considering the effect of battery degradation both in terms of increased thermal losses as well as reduction in the vehicle’s range. For this purpose, a three-dimensional transient thermal analysis framework was coupled with an electrochemical P2D-based battery model and a vehicle dynamics model to test different scenarios and their effect on a hybrid vehicle’s range and the lithium-ion battery life.
Journal Article

Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network

2020-04-14
2020-01-1181
Battery state-of-charge (SOC) is critical information for the vehicle energy management system and must be accurately estimated to ensure reliable and affordable electrified vehicles (xEV). However, due to the nonlinear temperature, health, and SOC dependent behaviour of Li-ion batteries, SOC estimation is still a significant automotive engineering challenge. Traditional approaches to this problem, such as electrochemical models, usually require precise parameters and knowledge from the battery composition as well as its physical response. In contrast, neural networks are a data-driven approach that requires minimal knowledge of the battery or its nonlinear behaviour. The objective of this work is to present the design process of an SOC estimator using a deep feedforward neural network (FNN) approach. The method includes a description of data acquisition, data preparation, development of an FNN, FNN tuning, and robust validation of the FNN to sensor noise.
Technical Paper

Quantification of Clamp Loss and Subsequent Loosening of Automotive Hub-Knuckle Joints under Time-Varying Proving Ground Loading

2020-04-14
2020-01-0181
Threaded fasteners or bolted joints are used extensively in automotive assemblies. There are standard procedures to evaluate joint performance under block cycles or road loads. The deciding load case for such joint design is slippage analysis of the joint. There are studies done to evaluate the theoretical and experimental behavior of these joints. There are different ways of understanding the interaction between the bolt and the nut under different loading scenarios. However, none have provided a satisfactory method of quantifying bolt loosening or loss of clamp load under cyclic loading, where no slippage is observed. Under varying loads, initial relaxation of the joint is followed by a loss of clamping load. Below a critical value, complete loss of clamping load progresses very rapidly and this results in a loose joint.
Technical Paper

Prediction of Tow Hook and Bolted Joint Strength Behavior Using Virtual Test Simulation Technique

2020-04-14
2020-01-1399
There is an increasing demand for reducing vehicle development process and minimizing cost due to tough competition in Automotive market. One of the major focus areas is minimizing the vehicle proto build that are required for physical testing during vehicle development. Tow hooks are key structural components for the vehicle, which are designed to withstand structural strength performance under various vehicles towing condition. Typical extreme load scenario for the vehicle can be towing fully loaded vehicle breaks down on uphill road or stuck in wet muddy condition. To exercise the tow hook structural development in early design phase, it is important to have reliable simulation process. This paper focuses on development of virtual test simulation process that replicates the tow hook system test behavior for the operating load. The study includes the detail modeling of clevis load applicator, tow hook, bolt joint and attached test bed plate for capturing the load path.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Technical Paper

New Method for Decoupling the Powertrain Roll Mode to Improve Idle Vibration

2019-06-05
2019-01-1588
Modern engines have high torque outputs and have low RPM due to increased demand for fuel efficiency. Vibrations caused by such engines have to be mitigated. Decoupling the roll mode from the remaining five rigid body modes results in a response which is predominantly about the torque roll axis (TRA) and helps reduce vibrations. Therefore, placing the mounts on the TRA early in the design phase is crucial. Best NVH performance can be obtained by optimizing the powertrain mount parameters viz; Position, Orientation and Stiffness. Many times, packaging restricts the mounts to be placed about the TRA resulting in degradation in NVH performance. Assuming that the line through the engine mount (Body side) centers is the desired TRA, we propose a novel method of shifting the TRA by adding mass modifying the powertrain inertia such that the new TRA is parallel to and on top to the desired TRA. This in turn will decouple the roll mode and reduce vibrations.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Journal Article

Longitudinal Vehicle Dynamics Modeling for AWD/4WD Vehicles to Study Torque Split between Front and Rear Axles

2020-04-14
2020-01-1410
All-wheel Drive (AWD) is a mature technology and most automobile manufacturers offer this feature on their vehicles. Improved traction, enhanced vehicle stability, and better handling are some of the key characteristics of AWD vehicles which are achieved by distributing the appropriate level of torque to the front and rear axles. Accurately capturing the torque split between the two axles is essential for sizing of driveline components like gears, bearings, and shafts. Traditionally, the torque split is considered to be either 50-50%, or solely proportional to the static weight distribution between the two axles. Design decisions are made based on historical test data. In this paper a longitudinal vehicle dynamics model for AWD systems is proposed to understand the influence of various key factors such as dynamic weight transfer, compliance of driveline components, and changing tire radius on the torque split.
Technical Paper

Impact of Sampling Time, Actuation/measurement Delays and Controller Calibration on Closed-loop Frequency Response for Non-linear Systems

2023-04-11
2023-01-0453
During input tracking, closed-loop performance is strongly influenced by the dynamic of the system under control. Internal and external delays, such as actuation and measurement delays, have a detrimental effect on the bandwidth and stability. Additionally, production controllers are discrete in nature and the sampling time selection is another critical factor to be considered. In this paper we analyze the impact of both transported delay and controller sampling time on tracking performance using an electric machine speed-control problem as an example. A simple linear PI controller is used for this exercise. Furthermore, we show how the PI parameters can be adjusted to maintain a certain level of performance as the delays and sampling times are modified. This is achieved through an optimization algorithm that minimizes a specifically designed cost function.
Technical Paper

Fleet Fatality Risk and its Sensitivity to Vehicle Mass Change in Frontal Vehicle-to-Vehicle Crashes, Using a Combined Empirical and Theoretical Model

2015-11-09
2015-22-0011
The objective of this study is to analytically model the fatality risk in frontal vehicle-to-vehicle crashes of the current vehicle fleet, and its sensitivity to vehicle mass change. A model is built upon an empirical risk ratio-mass ratio relationship from field data and a theoretical mass ratio-velocity change ratio relationship dictated by conservation of momentum. The fatality risk of each vehicle is averaged over the closing velocity distribution to arrive at the mean fatality risks. The risks of the two vehicles are summed and averaged over all possible crash partners to find the societal mean fatality risk associated with a subject vehicle of a given mass from a fleet specified by a mass distribution function. Based on risk exponent and mass distribution from a recent fleet, the subject vehicle mean fatality risk is shown to increase, while at the same time that for the partner vehicles decreases, as the mass of the subject vehicle decreases.
Technical Paper

Experimental Study on Static and Fatigue Performance of Self-Piercing Riveted Joints and Adhesively Bonded Self-Piercing Riveted Joints Connecting Steel and Aluminum Components

2020-04-14
2020-01-0177
This paper describes an experimental study on the performance of self-piercing riveted (SPR) joints and adhesively bonded SPR joints connecting steel and aluminum components under both quasi-static and cyclic loading. The joint configurations cover a wide range of material gauges, types and grades. Two and three thickness joints, with and without adhesive are also part of this study. Load versus deflection behavior, load carrying capacity, fatigue life and the failure modes for each type of joint are discussed. This study focuses on the influence of dissimilar material and adhesives to the joint performance.
Technical Paper

Effect of Casting Process on Strength Behaviour of Automotive Alloy Wheel

2021-04-06
2021-01-0800
Strength and fatigue assessment of chassis components are essentially influenced by the material used and manufacturing processes chosen. The manufacturing process of chassis components decides the variation in the mechanical properties of the component, which has an impact on the strength/fatigue performance. Investigating the design concerning the manufacturing processes is vital to the industry. Standard computer aided engineering (CAE) procedures for validating the alloy wheels usually consider the material properties as homogeneous. There was a gap between test results and CAE durability prediction (as per standard procedure). Incorporating the manufacturing process related characteristics with the strength simulation will be a viable solution to reduce this gap. This study was intended at developing a procedure for the strength analysis of an alloy wheel by considering the manufacturing process.
Technical Paper

Development of a Small Rear Facing Child Restraint System Virtual Surrogate to Evaluate CRS-to-Vehicle Interaction and Fitment

2015-04-14
2015-01-1457
Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

CAE Based Development of an Ejection Mitigation (FMVSS 226) SABIC using Design for Six Sigma (DFSS) Approach

2015-04-14
2015-01-1473
NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
Journal Article

Battery Entropic Heating Coefficient Testing and Use in Cell-Level Loss Modeling for Extreme Fast Charging

2020-04-14
2020-01-0862
To achieve an accurate estimate of losses in a battery it is necessary to consider the reversible entropic losses, which may constitute over 20% of the peak total loss. In this work, a procedure for experimentally determining the entropic heating coefficient of a lithium-ion battery cell is developed. The entropic heating coefficient is the rate of change of the cell’s open-circuit voltage (OCV) with respect to temperature; it is a function of state-of-charge (SOC) and temperature and is often expressed in mV/K. The reversible losses inside the cell are a function of the current, the temperature, and the entropic heating coefficient, which itself is dependent on the cell chemistry. The total cell losses are the sum of the reversible and irreversible losses, where the irreversible losses consist of ohmic losses in the electrodes, ion transport losses, and other irreversible chemical reactions.
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Technical Paper

Analysis of flatness based active damping control of hybrid vehicle transmission

2024-04-09
2024-01-2782
This paper delves into the investigation of flatness-based active damping control for hybrid vehicle transmissions. The main objective is to improve the current in-production controller performances without the need for additional sensors or observers. The primary goals include improving torque setpoint tracking, enhancing robustness margins, and ensuring zero steady-state torque correction. The investigation proceeds in several steps: Initially, both the general differential flatness property and the identification of flat outputs in linear dynamical systems are revisited. Subsequently, the bond graph formalism is employed to deduce straightforwardly the dynamical equations of the system. Next, a new flat output of the vehicle transmission is identified and utilized to formulate the trajectory tracking controller to align with the required control objectives and to fulfill the system constraints.
Technical Paper

An Investigation of Body Inertance Response for Occupant Safety Control Module Attachment Regions

2016-04-05
2016-01-0473
Current generation passenger vehicles are built with several electronic sensors and modules which are required for the functioning of passive safety systems. These sensors and modules are mounted on the vehicle body at locations chosen to meet safety functionality requirements. They are mounted on pillars or even directly on panels based on specific packaging requirements. The body panel or pillar poses local structural resonances and its dynamic behavior can directly affect the functioning of these sensors and modules. Hence a specific inertance performance level at the mounting locations is required for the proper functioning of those sensors and modules. Drive point modal frequency response function (FRF) analysis, at full vehicle model for the frequency range up to 1000 Hz, is performed using finite element method (FEM) and verified against the target level along with test correlation.
X