Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Thyristor Chopper Equipment Controlled by Magnetic Phase Shifter for Battery Forklift

1979-02-01
790896
Magnetic Phase Shifter is the controlling element to make integral action, excellent in anti-noise performance and makes high stable and reliable controlling device. (1)* We have developed a new compact thyristor chopper equipment controlled by Magnetic Phase Shifter. This equipment has simple controlling circuit and many functions such as wide range duty factor control, adjustable plugging brake, speed up by field weakening, anti-rollback control and so on.
Journal Article

Prediction of Vehicle Interior Noise from a Power Steering Pump using Component CAE and Measured Noise Transfer Functions of the Vehicle

2010-04-12
2010-01-0509
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
Technical Paper

Optical Multiplexed Transmission System using High Temperature Polymer Fiber

1989-02-01
890200
A multiplexed transmission system utilizing newly developed optical polymer has been proposed. The system is composed of a star-shaped optical network, in which optical signals can be transmitted bi-directionally through a fiber and optical branches between the central and local controllers. The new polymer optical fiber has been developed and adopted for this system, and it was designed to be durable to the high temperature in automotive engine rooms. The high temperature resistibility of the fiber has been achieved with utilization of a thermo-setting resin for the core materials. The optical loss characteristics of the fiber is as low as 0.50 dB/m at 660 nm wavelength.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

NOx Conversion Properties of a Mixed Oxide Type Lean NOx Catalyst

2000-03-06
2000-01-1197
Development is proceeding on catalysts which separate the NOx in lean exhaust gas by adsorption and then reduce the adsorbed NOx in combustion exhaust gas with the stoichiometric or a slightly richer air fuel ratio, as well as exhaust conversion technology that uses these catalysts. Amidst this research it has been found that catalysts containing mixed metal oxides exhibit superior NOx adsorption performance, so the authors prepared a mixed metal oxide catalyst by adding precious metals and promoters, etc. The resulting catalyst has high heat resistance and also offers excellent SOx durability. These properties were presumed to be due to an adsorbent including the mixed metal oxide, and the relation between the physical properties and NOx conversion properties of the catalyst was investigated.
Technical Paper

Investigation of a Detecting Technology of Combustion Conditions Using the Ion-Current Sensor

2015-09-01
2015-01-1983
In previous study, a method of combustion detection for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated [1]. In addition, an ion-current sensor has been used as a countermeasure against abnormal combustion with downsizing and higher compression ratio engines. An ion-current sensor has been newly adopted in engine systems. In this study, detection performance of combustion conditions in HCCI and spark ignition (SI) using with the ion-current sensor was estimated. The purpose of this study was to confirm detectable combustion conditions using with the ion-current sensor, and to confirm a requirement of applied voltage for the ion-current sensor. A detection signal of the ion-current sensor was changed by combustion style (HCCI,SI). Experimental results showed a heat release rate increased with ion signals increasing approximately at the same time in HCCI and SI.
Technical Paper

Investigation of Robustness Control for Practical Use of Gasoline HCCI Engine- An Investigation of a Detecting Technology of Conditions of HCCI Using an Ion Current Sensor -

2014-04-01
2014-01-1279
The robustness control for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated. On the other hand, an ion current sensor is used as a countermeasure against abnormal combustion with downsized and higher compression ratio engines. This sensor can generally be adopted in engine systems. Therefore, we examined the application of an ion current sensor to robustness control for HCCI. The purpose of this research was to develop a method of detecting combustion conditions to make HCCI engines more robust. Therefore, we evaluated the performance of the ion current sensor. Experimental results comparing ion intensity detection in HCCI. The detection value of the ion current sensor changed based on the form of combustion. Experimental results showed that the heat release rate increased with an increase in ion signals appear during the same time at approximately in both spark ignition (SI) and HCCI.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
Technical Paper

Development of a Three-Dimensional Bird's-eye View Map Drawing Technique for Car Navigation Systems

1998-02-23
980605
In this paper, a newly developed three-dimensional (3D) bird's-eye view map drawing technique for car navigation systems is described. Conventional navigation systems give pseudo-perspective views which can not express ruggedness like hills and valleys. Our newly developed navigation system can display undulation of the land from viewpoints above and behind the current position, so that ups and downs of roads along with the driver's destination can be seen easily. The 3D-road map is not only effective during navigation but also during route planning, because it assists in searching for fine views before travel. In order to achieve the 3D-map view, we developed graphics software libraries, which work on a 32-bit RISC processor and on a low-cost graphics accelerator LSI with texture mapping capability. The graphics software libraries are constructed with three stages, the perspective projection stage, visible-surface determination stage, and rendering stage.
Technical Paper

Controller Grid: Real-Time Load Balancing of Distributed Embedded Systems

2007-04-16
2007-01-1615
The concept of a “controller grid”, which makes effective use of computational resources distributed on a network while guaranteeing real-time operation, is proposed and applied to realize highly advanced control. It facilitates the total optimization of a plant control and achieves the high efficiency that is not acquired by individual plant optimization. To realize this concept, migration of a control task customized to be executed on one particular microcontroller to another microcontroller is necessary while strictly observing the required response time. Two techniques to meet this requirement are proposed: “task migration” for a control system and “real-time guaranteed scheduling of task migration and execution”. The effectiveness of the controller grid is assessed by applying it in experiments with electronic-throttle-body (ETB) advanced control.
Technical Paper

Application of Model Checking to Automotive Control Software with Slicing Technique

2013-04-08
2013-01-0436
To detect difficult-to-find defects in automotive control systems, we have proposed a modeling method with a program slicing technique. In this method, a verifier adjusts the boundaries of source code to be extracted on a variable dependence graph, in a kind of data flow. We have developed software tools for this method and achieved a 35% decrease in total verification time on model checking. This paper provides some consideration on effective cases of the method from verification practices. There are two types of malfunction causes: one is the timing of processes (race conditions), and the other is complex logics. Each type requires different elements in external environment models. Furthermore, we propose regression verification based on the modeling method above, to further reduce verification time on model checking. The paper outlines tool extensions needed to realize regression verification.
Technical Paper

Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine

2014-04-01
2014-01-1217
The cooled EGR system has been focused on as a method for knocking suppression in gasoline engines. In this paper, the effect of cooled EGR on knocking suppression that leads to lower fuel consumption is investigated in a turbo-charged gasoline engine. First, the cooled EGR effect is estimated by combustion simulation with a knock prediction model. It shows that the ignition timing at the knocking limit can be advanced by about 1 [deg. CA] per 1% of EGR ratio, combustion phasing (50% heat release timing) at the knocking limit can be advanced by about 0.5 [deg. CA] per 1% of EGR ratio, and the fuel consumption amount can be decreased by about 0.4% per 1% of EGR ratio. Second, the effect of cooled EGR is verified in an experimental approach. By adding inert gas (N2/CO2) as simulated EGR gas upstream of the intake pipe, the effect of EGR is investigated when EGR gas and fresh air are mixed homogeneously. As a result, the ignition timing at the knocking limit is advanced by 7 [deg.
Technical Paper

A Urea-Dosing Device for Enhancing Low-Temperature Performance by Active-Ammonia Production in an SCR System

2008-04-14
2008-01-1026
A new urea-dosing device with an active-ammonia production function was developed. This function is achieved by an electrically heated bypass passage with a hydrolysis catalyst for urea-to-ammonia conversion. The new device also has the function of mixing ammonia and exhaust gas. It is compact and has low-pressure loss by using the vortex occurring at the back of a static vane. We built a trial device for a small diesel engine and obtained steady state and transient data. The heated-bypass concept can be used in the aftertreatment system of passenger cars. Although active-ammonia production consumes electric power, a predictive calculation of power consumption (based on experimental results) shows that the developed bypass heater can suppress the energy consumption enough not to harm the high-energy efficiency of diesel engines.
Technical Paper

A New Diagnosis Method for an Air-Fuel Ratio Cylinder Imbalance

2012-04-16
2012-01-0718
A new diagnosis method for an air-fuel ratio cylinder imbalance has been developed. The developed diagnosis method is composed of two parts. The first part detects an occurrence of an air-fuel ratio cylinder imbalance by using a two revolution frequency component of an EGO sensor output signal or an UEGO sensor output signal upstream from a catalyst. The two revolution frequency component is from a cycle where an engine rotates twice. The second part of the diagnosis method detects an increase of emissions by using a low frequency component which is calculated from the output of an EGO sensor downstream from the catalyst. When the two revolution frequency component calculated using the upstream sensor output is larger than a certain level and the low frequency component calculated using the downstream sensor output is shifted to a leaner range, the diagnosis judges that the emissions increase is due to an air-fuel ratio cylinder imbalance.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
X