Refine Your Search

Topic

Author

Search Results

Standard

World Manufacturer Identifier

2006-12-19
HISTORICAL
J1044_200612
This SAE Recommended Practice establishes procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers who may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, J187, J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery.
Standard

World Manufacturer Identifier

2012-07-23
HISTORICAL
J1044_201207
This SAE Recommended Practice establishes procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers who may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, J187, J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-23
HISTORICAL
J2954_201904
The Recommended Practice SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under Recommended Practice SAE J2954 should also be able to be charged by SAE J1772 plug-in chargers.
Standard

Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology

2017-11-27
HISTORICAL
J2954_201711
The SAE Recommended Practice J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3 with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
Standard

Welding, Brazing, and Soldering - Materials and Practices

2018-01-09
CURRENT
J1147_201801
The Joint AWS/SAE Committee on Automotive Welding was organized on January 16, 1974, for the primary purpose of facilitating the development and publication of various documents related to the selection, specification, testing, and use of welding materials and practices, particularly for the automotive and related industries. A secondary purpose is the dissemination of technical information.
Standard

Welded, Flash-Controlled, Low-Carbon Steel Tubing Normalized for Bending, Double Flaring, Beading, Forming, and Brazing

2019-05-09
CURRENT
J356_201905
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material.
Standard

Welded, 304/304L Stainless Steel Tubing

2019-10-14
CURRENT
J3127_201910
This SAE Standard covers welded stainless steel pressure tubing intended for use as hydraulic lines and in other applications requiring corrosion resistance.
Standard

Welded and Cold-Drawn, SAE 1021 Carbon Steel Tubing Normalized for Bending and Flaring

2015-06-30
HISTORICAL
J2467_201506
The SAE Standard covers normalized electric resistance welded, cold-drawn, single-wall, SAE 1021 carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. The grade of material produced to this specification is higher in carbon content and manganese content than the grade of material specified in SAE J525 and is intended to service higher pressure applications than equivalent sizes of SAE J525. Due to the higher carbon and manganese content the forming characteristics of the finished tube are diminished versus the SAE J525 product. Special attention to the overall forming requirements of the finished assembly shall be taken into consideration when specifying material produced to this specification.
Standard

Welded and Cold-Drawn, High Strength (690 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Stress Relieved Annealed for Bending, Flaring, Cold Forming and Brazing

2018-06-15
CURRENT
J2833_201806
This specification covers stress relieved annealed electric resistance welded and cold-drawn single-wall high strength low alloy steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, cold forming, and brazing. The grade of material produced to this specification is of micro-alloy content. Nominal reference working pressures for this tubing are listed in ISO 10763 and SAE J1065. CAUTION: Sub-critically annealed steels are often produced using anneal temperatures below the Lower Critical Temperature (AC1) of the given steel to achieve the desired strength levels. Welding, brazing, or other processing methods that subject the tube material or assembly to temperatures near or above AC1 might initiate isothermal transformation of the tube microstructure and compromise the strength of the tube in the heat affected zone by further annealing the tube.
Standard

Welded and Cold-Drawn, High Strength (690 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Stress Relieved Annealed for Bending and Flaring

2009-08-18
HISTORICAL
J2833_200908
This specification covers sub-critically annealed electric resistance welded and cold-drawn single-wall high strength low alloy steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, cold forming, welding and brazing. The grade of material produced to this specification is of micro-alloy content and is considerably stronger and intended to service higher pressure applications using thinner walls than like sizes of the grades of material specified in SAE J525, SAE J2467 and SAE J2614. Due to the alloy content of the material, the forming characteristics of the finished tube are equal to or better, when compared to SAE J525, SAE J2467 and SAE J2614. Nominal reference working pressures for this tubing are listed in ISO 10763 and SAE J1065.
Standard

Welded and Cold-Drawn, High Strength (500 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Sub-Critically Annealed for Bending and Flaring

2009-09-28
HISTORICAL
J2614_200909
This specification covers sub-critically annealed electric resistance welded and cold-drawn single-wall high strength low alloy steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, cold forming, welding and brazing. The grade of material produced to this specification is of micro-alloy content and is considerably stronger and intended to service higher pressure applications than like sizes of the grades of material specified in SAE J525 and SAE J2467. Due to the alloy content of the material, the forming characteristics of the finished tube are equal to or better, when compared to SAE J525 and SAE J2467. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing and SAE J1065 for inch tubing.
Standard

Welded and Cold-Drawn, High Strength (500 MPa Tensile Strength) Hydraulic Tubing, for Bending, Flaring, Cold Forming, Welding and Brazing

2022-09-23
WIP
J2614
This specification covers sub-critically annealed or normalized electric resistance welded and cold-drawn single-wall high strength steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, cold forming, welding and brazing. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing and SAE J1065 for inch tubing.
Standard

Welded and Cold-Drawn, High Strength (500 MPa Tensile Strength) Hydraulic Tubing, for Bending, Flaring, Cold Forming, Welding and Brazing

2018-01-10
CURRENT
J2614_201801
This specification covers sub-critically annealed or normalized electric resistance welded and cold-drawn single-wall high strength steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, cold forming, welding and brazing. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing and SAE J1065 for inch tubing. This specification also covers SAE J2614 Type-A tubing. The mechanical properties and performance requirements of standard SAE J2614 and SAE J2614 Type-A are the same. The designated differences of Type-A tubing do not imply that Type-A tubing is in anyway inferior to standard SAE J2614. The Type-A designation is meant to address unique manufacturing differences between sub-critically annealed and normalized tubing.
Standard

Welded and Cold Drawn Low-Carbon Steel Tubing Annealed for Bending and Flaring

2021-04-21
WIP
J525
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing.   In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: • Lead to one global system • Guide users to preferred system • Reduce complexity • Eliminate inventory duplications
Standard

Welded and Cold Drawn Low-Carbon Steel Tubing Annealed for Bending and Flaring

2016-09-09
CURRENT
J525_201609
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Standard

Welded Low-Carbon Steel Tubing Suitable for Bending, Flaring, Beading, Forming and Brazing

2016-11-18
HISTORICAL
J526_201611
The SAE J526 Standard covers electric-resistance welded single-wall low-carbon steel pressure tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a quality suitable for bending, flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and tube purchaser. The material produced to this specification is intended to service pressure applications where severe forming and bending is not required.
Standard

Welded Low-Carbon Steel Tubing Suitable for Bending, Flaring, Beading, Forming and Brazing

2010-11-05
HISTORICAL
J526_201011
The SAE J526 Standard covers electric-resistance welded single-wall low-carbon steel pressure tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a quality suitable for bending, flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead. The material produced to this specification is intended to service pressure applications where severe forming and bending is not required. As this material may exhibit mechanical properties that reduce some desired forming characteristics versus SAE J356, the severity of the forming requirements of the finished assembly should be considered when utilizing material produced to this specification.
X