Refine Your Search

Topic

Author

Search Results

Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

Zinc Alloy Ingot and Die Casting Compositions

2018-01-09
CURRENT
J468_201801
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC ALLOY INGOT AND DIE CASTING COMPOSITIONS

1988-12-01
HISTORICAL
J468_198812
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

Wrought copper and Copper Alloys

2002-12-20
HISTORICAL
J463_200212
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Wrought and Cast Copper Alloys

2018-01-09
CURRENT
J461_201801
For convenience, this SAE Information Report is presented in two parts as shown below. To avoid repetition, however, data applicable to both wrought and cast alloys is included only in Part 1. Part I—Wrought Copper and Copper Alloys Types of Copper (Table 1) General Characteristics (Table 3) Electrical Conductivity Thermal Conductivity General Mechanical Properties (Table 10) Yield Strength Fatigue Strength Physical Properties (Table 2) General Fabricating Properties (Table 3) Formability Bending Hot Forming Machinability Joining Surface Finishing Color Corrosion Resistance Effect of Temperature Typical Uses (Table 3) Part II—Cast Copper Alloys Types of Casting Alloys Effects of Alloy Elements and Impurities General Characteristics (Table 11) Physical Properties (Table 12) Typical Uses (Table 11)
Standard

Wrought and Cast Copper Alloys

2002-12-20
HISTORICAL
J461_200212
For convenience, this SAE Information Report is presented in two parts as shown below. To avoid repetition, however, data applicable to both wrought and cast alloys is included only in Part 1. Part I—Wrought Copper and Copper Alloys Types of Copper (Table 1) General Characteristics (Table 3) Electrical Conductivity Thermal Conductivity General Mechanical Properties (Table 10) Yield Strength Fatigue Strength Physical Properties (Table 2) General Fabricating Properties (Table 3) Formability Bending Hot Forming Machinability Joining Surface Finishing Color Corrosion Resistance Effect of Temperature Typical Uses (Table 3) Part II—Cast Copper Alloys Types of Casting Alloys Effects of Alloy Elements and Impurities General Characteristics (Table 11) Physical Properties (Table 12) Typical Uses (Table 11)
Standard

Wrought Copper and Copper Alloys

2018-01-10
CURRENT
J463_201801
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Wrought Aluminum Applications Guidelines

2018-01-10
CURRENT
J1434_201801
This report approaches the material selection process from the designer's viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. "Applications criteria" along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

World Manufacturer Identifier

2006-12-19
HISTORICAL
J1044_200612
This SAE Recommended Practice establishes procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers who may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, J187, J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery.
Standard

World Manufacturer Identifier

2024-03-18
CURRENT
J1044_202403
This SAE Recommended Practice establishes procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers who may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, J187, J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery.
Standard

World Manufacturer Identifier

2012-07-23
HISTORICAL
J1044_201207
This SAE Recommended Practice establishes procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers who may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, J187, J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-23
HISTORICAL
J2954_201904
The Recommended Practice SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under Recommended Practice SAE J2954 should also be able to be charged by SAE J1772 plug-in chargers.
Standard

Wireless Power Transfer for Light-Duty Plug-In/ Electric Vehicles and Alignment Methodology

2016-05-26
HISTORICAL
J2954_201605
SAE TIR J2954 establishes an industry-wide specification guideline that defines acceptable criteria for interoperability, electromagnetic compatibility, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2 and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
Standard

Windshield Washer Tubing

2006-03-03
HISTORICAL
J1037_200603
This SAE Standard covers nonreinforced, extruded, flexible tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
X