Refine Your Search

Topic

Search Results

Technical Paper

Variable compression in SI engines

2001-09-23
2001-24-0050
Downsizing is an effective way to further improve the efficiency of SI engines. To make most of this concept, the compression ratio has to be adjusted during engine operation. Thus, the efficiency disadvantages during part load can be eliminated. A fuel consumption reduction of up to 30% can be realized compared to naturally aspirated engines of the same power. After the assessment of several known concepts it turned out that the eccentric crankshaft positioning represents an appropriate solution which meets the requirements of good adjustability, unaltered inertia forces, low power demand of the positioning device and reasonable design effort. The basic challenges posed by the eccentric crankshaft positioning have been tackled, namely the crankshaft bearing and the integration of the newly developed power take-offs which have almost no influence on the base design.
Technical Paper

Variable Compression Ratio - A Design Solution for Fuel Economy Concepts

2002-03-04
2002-01-1103
The challenge to reduce fuel consumption in S.I. engines is leading to the application of new series production technologies: including direct injection and, recently, the variable valve train, both aiming at unthrottled engine operation. In addition to these technologies, turbo- or mechanical supercharging is of increasing interest because, in principle, it offers a significant potential for improved fuel economy. However, a fixed compression ratio normally leads to a compromise, in that the charged engine is more of a performance enhancement than an improver of fuel economy. Fuel efficient downsizing concepts can be realized through the application of variable compression ratio. In this paper, a variable compression ratio design solution featuring eccentric movement of the crankshaft is described. Special attention is given to the integration of this solution into the base engine.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Journal Article

Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study

2014-04-01
2014-01-1064
It is commonly recognized that the paths for improving fuel consumption (BSFC) in a spark-ignition engine at part-load require more advanced valve actuation strategies, which largely affect the pumping work. Since several years, many different solutions have been proposed, characterized by different levels of complexity, effectiveness, and cost. Valve systems currently available on the market allow for variable phasing (VVT - Variable Valve Timing), and/or lift (VVA - Variable Valve Actuation). Usually VVT devices are applied on intake and exhaust camshafts, in the “phased” or “unphased” configuration, as well. VVA devices are instead commonly mounted on the intake camshaft. More recent VVA systems also allow for a double intake valve lift during a single engine cycle (multi-lift), or may include a small intake pre-lift during the exhaust stroke. The latter solutions may determine further BSFC reductions. Alternatively, an external-EGR circuit can be considered, as well.
Technical Paper

Steady and Unsteady Modeling of Turbocharger Compressors for Automotive Engines

2010-05-05
2010-01-1536
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and Compression Ignition engines. To this end, one-dimensional (1D) modelling is usually employed to compute the engine-turbocharger matching, to select the boost level in different operating conditions and to estimate low end torque level and transient response. However, 1D modeling of a turbocharged engine requires the availability of the turbine and compressor characteristic maps. This leads to some typical drawbacks: performance maps of the turbocharger device are usually limited to a reduced number of rotational speeds, pressure ratios and mass flow rates.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine

2017-09-04
2017-24-0015
Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
Journal Article

Map-Based and 1D Simulation of a Turbocharger Compressor in Surging Operation

2011-09-11
2011-24-0126
One-dimensional (1D) models are commonly employed to study the performances of turbocharged engine. Manufacturers' provided steady turbomachinery maps are usually utilized, although they operate in unsteady conditions as a consequence of pressure pulses propagating into the intake and exhaust systems. This may lead to some inaccuracies in the engine-turbocharger matching calculations, which may be solved through the introduction of proper time-delays (virtual pipe corrections). These drawbacks, however, became more relevant when engine operates under low speed and high load conditions, or during a transient maneuver, because of possibilities of compressor surging.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment

2015-09-06
2015-24-2392
In this paper, a high performance V12 spark-ignition engine is experimentally investigated at test-bench in order to fully characterize its behavior in terms of both average parameters, cycle-by-cycle variations and knock tendency, for different operating conditions. In particular, for each considered operating point, a spark advance sweep is actuated, starting from a knock-free calibration, up to intense knock operation. Sequences of 300 consecutive pressure cycles are measured for each cylinder, together with the main overall engine performance, including fuel flow, torque, and fuel consumption. Acquired data are statistically analyzed to derive the distributions of main indicated parameters, in order to find proper correlations with ensemble-averaged quantities. In particular, the Coefficient of Variation (CoV) of IMEP and of the in-cylinder peak pressure (pmax) are correlated to the average combustion phasing and duration (MFB50 and Δθb), with a good coefficient of determination.
Technical Paper

Gasoline Combustion with Future Fuels

2007-01-17
2007-26-021
This paper describes the demands and potentials of current and future gasoline combustion systems regarding the fuels gasoline, natural gas, and Hydrogen. At first, fuel specifications that are crucial for the spark ignition process are compared. These are compared with the requirements of the combustion system. Potentials for the compensation of power loss, efficiency improvement and emission reduction using alternative fuels are discussed taking into account fuel-specific properties. While full load drawbacks with natural gas compared with gasoline can be reduced to less than 5% by combustion system tuning, Hydrogen operation with port injection leads to reductions of about 25 to 30%. These drawbacks can be compensated with boosting where both methane and Hydrogen are qualified due to their burning characteristics. Compared with λ=1 operation especially Hydrogen offers efficiency benefits of up to 30% in a wide mapping range due to quality control.
Journal Article

Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System

2015-04-14
2015-01-1244
It is well known that the downsizing philosophy allows the improvement of Brake Specific Fuel Consumption (BSFC) at part load operation for spark ignition engines. On the other hand, the BSFC is penalized at high/full load operation because of the knock occurrence and of further limitations on the Turbine Inlet Temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while TIT control requires enrichment of the Air-to-Fuel (A/F) ratio, with additional BSFC drawbacks. In this work, a promising technique, consisting of the introduction of a low-pressure cooled exhaust gas recirculation (EGR) system, is analyzed by means of a 1D numerical approach with reference to a downsized turbocharged SI engine. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon and the knock occurrence.
Technical Paper

Fuel Consumption and Pollutant Emission Optimization at Part and Full Load of a High-Performance V12 SI Engine by a 1D Model

2019-09-09
2019-24-0080
Modern internal combustion engines show complex architectures in order to improve their performance in terms of brake torque and fuel consumption. Concerning naturally-aspirated engines, an optimization of the intake port geometry, together with the selection of a proper valve timing, allow to improve the cylinder filling and hence the performance. The identification of an optimal calibration strategy at test bench usually requires long and expensive experimental activities. Numerical tools can help to support engine calibration, especially in the early design phases. In the present work, a 12-cylinder naturally aspirated spark ignition engine is investigated. The engine is experimentally tested under full and part load operations. Main performance parameters, in-cylinder pressure cycles and raw pollutant emissions are measured.
Journal Article

Fuel Consumption Optimization and Noise Reduction in a Spark-Ignition Turbocharged VVA Engine

2013-04-08
2013-01-1625
Modern VVA systems offer new potentialities in improving the fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of concurrently modifying the intake valve opening, closing and lift leading to the development of almost "throttle-less" engines. However, at very low loads, the control of the air-flow motion and the turbulence intensity inside the cylinder may require to select a proper combination of the butterfly throttling and the intake valve control, to get the highest BSFC (Brake Specific Fuel Consumption) reduction. Moreover, a low throttling, while improving the fuel consumption, may also produce an increased gas-dynamic noise at the intake mouth. In highly "downsized" engines, the intake valve control is also linked to the turbocharger operating point, which may be changed by acting on the waste-gate valve.
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Journal Article

Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine

2017-03-28
2017-01-0540
In this work, a promising technique, consisting of a liquid Water Injection (WI) at the intake ports, is investigated to overcome over-fueling and delayed combustions typical of downsized boosted engines, operating at high loads. In a first stage, experimental tests are carried out in a spark-ignition twin-cylinder turbocharged engine at a fixed rotational speed and medium-high loads. In particular, a spark timing and a water-to-fuel ratio sweep are both specified, to analyze the WI capability in increasing the knock-limited spark advance. In a second stage, the considered engine is schematized in a 1D framework. The model, developed in the GT-Power™ environment, includes user defined procedures for the description of combustion and knock phenomena. Computed results are compared with collected data for all the considered operating conditions, in terms of average performance parameters, in-cylinder pressure cycles, burn rate profiles, and knock propensity, as well.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Journal Article

Experimental and 0D Numerical Investigation of Ultra-Lean Combustion Concept to Improve the Efficiency of SI Engine

2021-04-06
2021-01-0384
Recently, the car manufacturers are moving towards innovative Spark Ignition (SI) engine architectures with unconventional combustion concepts, aiming to comply with the stringent regulation imposed by EU and other legislators. The introduction of burdensome cycles for vehicle homologation, indeed, requires an engine characterized by a high efficiency in the most of its operating conditions, for which a conventional SI engine results to be ineffective. Combustion systems which work with very lean air/fuel mixture have demonstrated to be a promising solution to this concern. Higher specific heat ratio, minor heat losses and increased knock resistance indeed allow improving fuel consumption. Additionally, the lower combustion temperatures enable to reduce NOX production. Since conventional SI engines can work with a limited amount of excess air, alternative solutions are being developed to overcome this constraint and reach the above benefit.
Journal Article

Experimental Investigation and 1D Simulation of a Turbocharger Compressor Close to Surge Operation

2015-04-14
2015-01-1720
Downsizing is widely considered one of the main path to reduce the fuel consumption of spark ignition internal combustion engines. As known, despite the reduced size, the required torque and power targets can be attained thanks to an adequate boost level provided by a turbocharger. However, some drawbacks usually arise when the engine operates at full load and low speeds. In fact, in the above conditions, the boost pressure and the engine performance is limited since the compressor experiences close-to-surge operation. This occurrence is even greater in case of extremely downsized engines with a reduced number of cylinders and a small intake circuit volume, where the compressor works under strongly unsteady flow conditions and its instantaneous operating point most likely overcomes the steady surge margin. In the paper, both experimental and numerical approaches are followed to describe the unsteady behavior of a small in-series turbocharger compressor.
Technical Paper

Efficient Thermal Electric Skipping Strategy Applied to the Control of Series/Parallel Hybrid Powertrain

2020-04-14
2020-01-1193
The optimal control of hybrid powertrains represents one of the most challenging tasks for the compliance with the legislation concerning CO2 and pollutant emission of vehicles. Most common off-line optimization strategies (Pontryagin minimum principle - PMP - or dynamic programming) allow to identify the optimal control along a predefined driving mission at the expense of a quite relevant computational effort. On-line strategies, suitable for on-vehicle implementation, involve a certain performance degradation depending on their degree of simplification and computational effort. In this work, a simplified control strategy is presented, where the conventional power-split logics, typical of the above-mentioned strategies, is here replaced with an alternative utilization of the thermal and electric units for the vehicle driving (Efficient Thermal Electric Skipping Strategy - ETESS).
X