Refine Your Search

Search Results

Viewing 1 to 19 of 19
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Technical Paper

Oil Conditioning as a Means to Minimize Lubricant Ash Requirements and Extend Oil Drain Interval

2009-06-15
2009-01-1782
A novel approach to condition the lubricant at a fixed station in the oil circuit is explored as a potential means to reduce additive requirements or increase oil drain interval. This study examines the performance of an innovative oil filter which releases no additives into the lubricant, yet enhances the acid control function typically performed by detergent and dispersant additives. The filter chemically conditions the crankcase oil during engine operation by sequestering acidic compounds derived from engine combustion and lubricant degradation. Long duration tests with a heavy-duty diesel engine show that the oil conditioning with the strong base filter reduces lubricant acidity (TAN), improves Total Base Number (TBN) retention, and slows the rate of viscosity increase and oxidation. The results also indicate that there may be a reduction in wear and corrosion.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Modeling Study of Metal Fiber Diesel Particulate Filter Performance

2015-04-14
2015-01-1047
Sintered metal fiber (SMF) diesel particulate filters (DPF) has more than one order of magnitude lower pressure drop compared to a granular or reaction-born DPF of the same (clean) filtration efficiency. To better understand the filtration process and optimize the filter performance, metal fiber filter models are developed in this study. The major previous theoretical models for clean fibrous filter are summarized and compared with experimental data. Furthermore, a metal fiber DPF soot loading model, using similar concept developed in high efficiency particulate air (HEPA) filter modeling, is built to simulate filter soot loading performance. Compared with experimental results, the soot loading model has relatively good predictions of filter pressure drop and filtration efficiency.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

2014-04-01
2014-01-1659
Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Journal Article

Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear: Comparison with Conventional Diesel Fuel

2008-04-14
2008-01-1395
The increased use of biodiesel fuels has raised concerns over the fuel's impact on engine performance and hardware compatibility. While these issues have received much attention in recent years, less well-known are the effects of biodiesel on engine-out ash emissions and lubricant properties. Significant differences in composition between biodiesel and petroleum diesel fuels have the potential to influence ash emissions, thereby affecting aftertreatment system performance. Further, the fuel also interacts directly with the lubricant through fuel dilution, and may impact lubricant properties. In this study, a 5.9L, 6 cylinder, Cummins ISB 300 diesel engine was outfitted with a specially designed rapid lubricant aging system and subjected to a set of steady-state engine operating conditions. The lubricant aging system allows for the investigation of the interactions of emissions and combustion products, as well as fuel dilution, on lubricant properties in an accelerated manner.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Effect of Ash Accumulation on the Performance of Diesel Exhaust Particulate Traps

1983-02-01
830182
This paper describes the study and the results obtained to determine the performance deterioration of diesel particulate traps due to ash accumulation. Based on the ash emission rate in an engine exhaust and the full-size trap volume, a flow and distance simulation technique was developed to translate the results from bench tests of small scaled down traps to engine conditions. Fuel doped with metalloorganic additives was used to accelerate the ash loading of the scaled traps. The study was conducted on both a cellular ceramic trap and a wire-mesh trap. Results indicate that for a 60 liter, ceramic trap mounted on the exhaust of a heavy duty engine, the pressure drop, Δp, will double in approximately 90,000 km. It is also seen that for the same size wire-mesh trap, the Δp will increase by 70% of the clean trap Δp in about 200,000 km. The paper also describes the work done to determine the effect of particulate trap pore size on ash accumulation in cellular ceramic traps.
Technical Paper

Direct Observation of the Friction Reduction of Multigrade Lubricants

1991-02-01
910742
The oil film thickness distribution between the top ring and liner was observed using laser fluorescence (LF). Five different commercial lubricants, two single grades and three multigrades, were studied at two azimuthal, mid-stroke locations for five speed/load combinations in a small IDI diesel engine. Cavitation is never observed. The lubricant always separates tangent to the ring surface. The rheology of the oil flow under the ring is consistent with a non-Newtonian viscosity without elasticity. The difference between lubricant type (single or multigrade) corresponds to differences in inlet and outlet conditions. Using an analytical model together with the measured oil distributions, calculations demonstrate a difference in friction between single and multigrade lubricants. The multigrade lubricants have a lower friction coefficient, consistent with improvements in fuel economy reported in the literature.
Technical Paper

Development of Engine Lubricant Film Thickness Diagnostics Using Fiber Optics and Laser Fluorescence

1992-02-01
920651
An apparatus was designed and applied to measure the oil-film thickness in a production engine using the principle of laser-induced fluorescence. The apparatus incorporated fiber optics technology in its design with an aim to improve the ease of installation, portability, durability, spatial resolution and signal-to-noise ratio of previous designs using conventional optics, which hitherto have been used almost exclusively in studying oil-film characteristics in detail. Bench tests and engine tests were conducted to study the optimum combination of system components and to evaluate the performance of the design. These tests indicate that the goals of the design have been achieved. The increased spatial resolution enabled more precise identification of important lubricant features around the piston rings.
Technical Paper

Detailed Chemical and Physical Characterization of Ash Species in Diesel Exhaust Entering Aftertreatment Systems

2007-04-16
2007-01-0318
Irreversible plugging of diesel particulate filters caused by lubricant-derived metallic ash is the single most important factor responsible for long-term performance degradation and reduction in the service life of these filters. While a number of studies in the open literature have already demonstrated the benefits of diesel particulate traps and highlighted some of the difficulties associated with trap operation, many specific factors affecting trap performance and service life are still not well understood. The exact composition and nature of the exhaust entering the trap is one of the most important parameters affecting both short-term trap operation and long-term durability. In this study a fully instrumented Cummins ISB 300 six-cylinder, 5.9 liter, diesel engine was outfitted with a diesel particulate filter and subjected to a subset of the Euro III 13-mode stationary test cycle.
Technical Paper

Correlations among Ash-Related Oil Species in the Power Cylinder, Crankcase and the Exhaust Stream of a Heavy-Duty Diesel Engine

2007-07-23
2007-01-1965
In this study, changes in the composition of lubricant additives in the power cylinder oil are examined. Samples are extracted from a single cylinder heavy-duty diesel engine in two locations during engine operation; the crankcase and the top ring groove of the piston. Emissions of lubricant-derived ash-forming elements are lower than would be expected based on oil consumption and crankcase oil composition. This occurs partly because the inorganic additive compounds are less volatile than light-end hydrocarbons in the base oil. The tribology of the piston ring pack also affects the composition of the oil consumed in the power cylinder system. The elemental composition of oil extracted from the top ring groove is significantly different than the crankcase oil. Additive metals are concentrated in the top ring groove of the power cylinder. Detergent compounds (i.e. Ca and Mg) concentrate due to the volatility of the base oil. The metals associated with ZDDP (i.e.
Technical Paper

Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results

2009-04-20
2009-01-1086
Ash, mostly from essential lubricant additives, affects diesel particulate filter (DPF) pressure-drop sensitivity and limits filter service life. It raises concern in the lubricant industry to properly specify new oils, and engine and aftertreatment system manufacturers have attempted to find ways to mitigate the problem. To address these issues, results of detailed measurements of ash characteristics in the DPF and their effects on filter performance are presented. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous studies, this system allows for the control of specific exhaust characteristics including ash emission rate, ash-to-particle ratio, ash composition, and exhaust temperature and flow rates independent of the engine operating condition.
Technical Paper

Calibration of Laser Fluorescence Measurements of Lubricant Film Thickness in Engines

1988-10-01
881587
A laser fluorescent diagnostic method was employed to measure lubricant film thickness on the cylinder wall/piston interface of two engines. The system output signal was calibrated using lubricant samples of known thickness, and by comparison of a known piston ring profile to measured lubricant film contours. Agreement of the results of the two calibration methods was within 5%. A relative calibration was performed with three oils having different additive packages, and with an oil contaminated through use in a commercially operated engine. The calibration coefficients for the oils, relating output voltage to film thickness, varied within a factor up to two, depending on lubricant type and age. The laser fluorescent apparatus was installed for use with a single cylinder test version of the Cummins VT-903 diesel engine. An optical passage was created through the block and cylinder wall using a quartz window.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

2001-09-24
2001-01-3544
Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
Technical Paper

A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces

1996-10-01
962032
A complete one-dimensional mixed lubrication model has been developed to predict oil film thickness and friction of the piston ring-pack. An average flow model and a roughness contact model are used to consider the effects of surface roughness on both hydrodynamic and boundary lubrication. Effects of shear-thinning and liner temperature on lubricant viscosity are included. An inlet condition is applied by considering the unsteady wetting location at the leading edge of the ring. A ‘film non-separation’ exit condition is proposed to replace Reynolds exit condition when the oil squeezing becomes dominant. Three lubrication modes are considered in the model, namely, pure hydrodynamic, mixed, and pure boundary lubrication. All of these considerations are crucial for studying the oil transport, asperity contact, and friction especially in the top dead center (TDC) region where the oil control ring cannot reach.
Journal Article

A Novel Accelerated Aging System to Study Lubricant Additive Effects on Diesel Aftertreatment System Degradation

2008-06-23
2008-01-1549
The challenge posed by the long run times necessary to accurately quantify ash effects on diesel aftertreatment systems has led to numerous efforts to artificially accelerate ash loading, with varying degrees of success. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous attempts, the proposed methodology utilizes a series of thermal reactors and combustors to simulate all three major oil consumption mechanisms, namely combustion in the power cylinder, evaporative and volatile losses, and liquid losses through the valve and turbocharger seals. In order to simulate these processes, each thermal reactor allows for the precise control of the level of lubricant additive degradation, as well as the form and quantity of degradation products introduced into the exhaust upstream of the aftertreatment system.
X