Refine Your Search

Topic

Search Results

Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Two-Way Coupled CFD Approach for Predicting Gear Temperature of Oil Jet Lubricated Transmissions

2018-07-24
Abstract This article focuses on the development of a two-way coupled methodology to predict gear temperature of oil jet lubricated transmissions using commercial software for computational fluid dynamics simulation. The proposed methodology applies an overset mesh technique to model the gear interlocking motion, multiphase of air-oil mixture, and heat transfer. Two gear pairs were used to develop and validate the methodology, an overdrive helical gear pair of a commercial vehicle transmission and a standard spur gear pair. Different oil jet lubrication methods were investigated using the proposed methodology, such as oil jet directed at the into-mesh position and at the out-of-mesh position. This investigation showed that out of mesh lubrication direction shows better cooling performance which is in well agreement with previous studies of literature.
Journal Article

Transient Response of Turbocharged Compression Ignition Engine under Different Load Conditions

2023-07-26
Abstract In urban roads the engine speed and the load vary suddenly and frequently, resulting in increased exhaust emissions. In such operations, the effect of air injection technique to access the transient response of the engine is of great interest. The effectiveness of air injection technique in improving the transient response under speed transient is investigated in detail [1]; however, it is not evaluated for the load transients. Load step demand of the engine is another important event that limits the transient response of the turbocharger. In the present study, response of a heavy-duty turbocharged diesel engine is investigated for different load conditions. Three cases of load transients are considered: constant load, load magnitude variation, and load scheduling. Air injection technique is simulated and after optimization of injection pressure based on orifice diameter, its effect on the transient response is presented.
Journal Article

Torque Distribution Control Strategy of Electric Wheel Loader with Multiple Drive Motors Based on Optimal Motor Efficiency

2023-03-15
Abstract Wheel loaders are widely used in construction projects. In order to reduce pollution and energy consumption, major wheel loader manufacturers are developing electric powertrain technology. Our main research goal is to reduce the energy consumption of a pure electric loader. This study is intended to build a vehicle simulation model of a multiple drive motor electric loader. According to the common working conditions and empirical formulas of the loader, the simulation data of the electric loader are calculated. The torque distribution control strategy based on the optimal efficiency of the motor is designed for the multiple drive motor electric loader and is compared with the equal proportion distribution control and the axle load ratio distribution control through simulation analysis. The simulation results show that the proposed torque distribution control strategy based on motor optimal efficiency can reduce energy consumption by 7–12%.
Journal Article

Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling

2020-10-02
Abstract Diesel engines include systems for cooling, lubrication, and fuel injection and contain a variety of components. A malfunction in any of the engine systems or the presence of any faulty element influences engine performance and deteriorates its components. This research is concerned with the untimely appearance of vital cracks in the liners of a turbocharged heavy-duty Diesel engine. To find the root causes for premature failure, rigorous examinations through visual observations, material characterization, and metallographic investigations are performed. These include Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS), fracture mechanics analysis, and performance examination, which are also followed by Finite Element Moldings. To find the proper remedy to resolve the problem, drawing a precise and reliable picture of the engine’s operating conditions is required.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract Off-highway equipment are subjected to diverse environmental conditions, severe duty cycles, and multiple simultaneous operations. Due to its continuous, high-power adverse operating conditions, equipment are exposed to high thermal loads, which result in the deterioration of its performance and efficiency. This article describes a model-based system simulation approach for thermal performance evaluation of a self-propelled off-highway vehicle. The objective of developing the simulation model including thermal fidelity is to quantify the impact of thermal loads on vehicular system/subsystems performance. This article also describes the use of simulation models for driving architectural design decisions and virtual test replication in all stages of product development.
Journal Article

Theoretical Study of Improving the Safety of the “Operator, Machine, and Environment” System when Performing Transport Operations

2018-06-05
Abstract The article considers the issues of a systemic approach to studying safety levels in transport operations and ways to increase the safety of the operator-machine system in Russian transport. The principal and problematic issues of reducing the risk of injury by preventing traffic accidents and reducing the severity of their impact have not been sufficiently addressed. When performing transport operations, there are often disagreements between the elements of the “Operator, Machine, and Environment” technological system due to the influence of external conditions and parameters of the constantly-changing environment in the workplace. This leads to a sharp increase in the number of failures of system elements, which reduces the level of safety of transport operations.
Journal Article

The Influence of the Content and Nature of the Dispersive Filler at the Formation of Coatings for Protection of the Equipment of River and Sea Transport

2020-01-23
Abstract To protect ship equipment of river and sea transport, it is suggested to use polymeric protective coatings based on epoxy diane oligomer ED-20, polyethylene polyamine (PEPA) curing agent and filler, which is a departure from industrial production. Thus the purpose of the work is analysis of major dependency of the properties on the content of fillers that allowed to revealed the critical filler content (furnace black) in composites to form a protective coating with the required set of characteristics. The infrared (IR) spectral analysis was used to investigate the presence of bonds on the surface of particles of the PM-75 furnace black, which allows us to assess the degree of cross-linking of the polymer. The influence of the content of dispersed furnace black on the physicomechanical and thermophysical properties and the structure of the protective coating is investigated.
Journal Article

The Impact of Miller Valve Timing on Combustion and Charging Performance of an Ethanol- and Methanol-Fueled Heavy-Duty Spark Ignition Engine

2021-05-10
Abstract Combustion engines and liquid fuels are likely to continue playing a central role in freight transportation with renewable fuels reducing carbon emissions. Ethanol and methanol are future renewable fuels with a knock resistance that make them suitable for heavy-duty (HD) spark ignition (SI) engines. This simulation work focuses on the potential for improving the efficiency of an ethanol- and methanol-fueled HD SI engine using early intake valve closing Miller valve timing. With Miller valve timing, the expansion ratio and thermodynamic efficiency can be increased while maintaining the same effective compression ratio. However, Miller timing requires increased boost pressure to retain the same trapped air mass and also suffers from reduced in-cylinder turbulence.
Journal Article

The Effect of NO2/NOx Ratio on the Performance of a SCR Downstream of a SCR Catalyst on a DPF

2019-06-14
Abstract Different aftertreatment systems consisting of a combination of selective catalytic reduction (SCR) and SCR catalyst on a diesel particulate filter (DPF) (SCR-F) are being developed to meet future oxides of nitrogen (NOx) emissions standards being set by the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). One such system consisting of a SCRF® with a downstream SCR was used in this research to determine the system NOx reduction performance using experimental data from a 2013 Cummins 6.7L ISB diesel engine and model data. The contribution of the three SCR reactions on NOx reduction performance in the SCR-F and the SCR was determined based on the modeling work. The performance of a SCR was simulated with a one-dimensional (1D) SCR model. A NO2/NOx ratio of 0.5 was found to be optimum for maximizing the NOx reduction and minimizing NH3 slip for the SCR for a given value of ammonia-to-NOx ratio (ANR).
Journal Article

The Effect of Inlet Valve Timing and Engine Speed on Dual Fuel NG-Diesel Combustion in a Large Bore Engine

2018-04-18
Abstract High load (18 bar IMEP) dual fuel combustion of a premixed natural gas/air charge ignited by directly injected diesel fuel was studied in a large bore gas engine. A nozzle design with low flow rate was installed to inject a small diesel volume (10.4 mm3) equal an energetic amount of about two percent. The effect of compression end temperature on ignition and combustion was investigated using valve timings with early IVC (Miller) and maximum charging efficiency (MaxCC). Furthermore, the engine speed was reduced (1500 rpm to 1000 rpm) for the Miller valve timing to analyze the impact of the chemical time scale on the combustion process. During all experiments, the cylinder charge density was kept constant adjusting the intake pressure and the resulting air mass flow.
Journal Article

The Effect of Engine Speed, Exhaust Gas Recirculation, and Compression Ratio on Isobaric Combustion

2020-08-14
Abstract The present study evaluates the effect of engine speed, exhaust gas recirculation (EGR), and compression ratio on conventional diesel combustion (CDC) and two isobaric combustion cases, by utilizing multiple injection strategies. The experiments were conducted in a Volvo D13C500 single-cylinder, heavy-duty engine, fuelled with standard European Union (EU) diesel fuel. The engine was operated at three different speeds of 1200, 1500, and 1800 revolutions per minute (rpm). For each engine speed and combustion cases, the EGR rate was varied from 0% to 40%. The low-pressure isobaric combustion (IsoL) and high-pressure isobaric combustion (IsoH) were maintained at peak cylinder pressure (PCP) of 50 and 68 bar, respectively, which was representative of the peak motoring pressure (PMP) and PCP of CDC. This was possible by adjusting the intake air pressure to 1.7 and 2.3 bar—absolute for IsoL and IsoH, respectively, at 1200 rpm.
Journal Article

The Effect of Change in Assembly Sequence on Permanent Strain of Cab Suspension Console

2020-08-20
Abstract Heavy commercial vehicles play an important role in creating the trade and economic balance of countries. Also, the durability and safety of heavy commercial vehicles come to the fore. Heavy commercial vehicles consist of two parts. These are the chassis area with the equipment that allows the vehicle to move and the cabin section where the driver is located. The cabin area is the most important area that ensures the highest level of driver safety. Considering that the production of trucks is increasing day by day, it is inevitable for companies to increase their R&D activities in the field of cabin and cabin suspension systems for much safer, durable, and comfortable trucks. This study aims to determine the safe torque value of the fasteners and their assembly sequence of the Cab Suspension Console, which is one of the most important connection parts in a truck and which can cause a fatal accident by breaking.
Journal Article

TOC

2020-06-25
Abstract TOC
Journal Article

TOC

2022-09-07
Abstract TOC
Journal Article

TOC

2020-05-15
Abstract TOC
X