Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

Yielding Strengh Analysis for Self Supported Pressure Vessels

2002-11-19
2002-01-3479
The hazardous bulk chemical liquid cargo transportation is usually made through highways, using special automotive devices, named semitrailer tank, a kind of mobile tank specially developed to perform this task, manufactured with many types of steel, selected according to the chemical characteristics of the product to be transported. Equipment sizing is made based on specific standards which include specified formulas, loading, and safety factors representing the design criteria of this type of device. Despite of the detailed design criteria for semitrailer tank, it has been observed failure of some pieces of equipment during operation, in a shorter effective life than that one considered in the design phase itself. Considering a detailed study of the stress distribution in this type of equipment, this paper shows a verification of the possibility of yielding failure in the semitrailer tank structure.
Technical Paper

Yield Mapping with Digital Aerial Color Infrared (CIR) Images

1999-09-14
1999-01-2847
Yield potential was predicted and mapped for three corn fields in Central Illinois, using digital aerial color infrared images. Three methods, namely statistical (regression) modeling, genetic algorithm optimization and artificial neural networks, were used for developing yield models. Two image resolutions of 3 and 6 m/pixel were used for modeling. All the models were trained using July 31 image and tested using images from July 2 and August 31, all from 1998. Among the three models, artificial neural networks gave best performance, with a prediction error less than 30%. The statistical model resulted in prediction errors in the range of 23 to 54%. The lower resolution images resulted in better prediction accuracy compared to resolutions higher than or equal to the yield resolution. Images after pollination resulted in better accuracy compared to images before pollination.
Technical Paper

Yield Mapping of Soybeans and Corn Using GPS

1995-09-01
952112
Data obtained when harvesting with a combine equipped with a yield monitor were used to develop yield maps. A prototype yield monitor was developed that uses a combination of light emitters and receivers mounted in a rectangular frame. The monitor was mounted in the combine in the top of the clean grain elevator. As grain flows through the monitor, a voltage change proportional to light reduction was recorded. This voltage was then correlated to grain flow rate. At the same time, site-specific location was recorded using the global positioning satellites (GPS) system. The location data, yield monitor output, cutting width, and combine forward speed were stored in a spreadsheet format. The data were then used to prepare the yield maps.
Technical Paper

Worldclass Product Development Overview

1990-04-01
900893
This paper will discuss Concurrent Engineering as an emerging product development methodology. Specific emphasis will be placed on some of the key tools and considerations necessary for the success of Concurrent Engineering. In particular, the paper will discuss strategic product planning driven by customer requirements and how the product development effort will support the strategic product plan.
Technical Paper

Work Solenoids-Environmental and Design Considerations for Earthmoving Equipment Applications

1986-04-01
860760
Work solenoids are widely used in household appliances. The environment and design of this type application does not lead to solenoids for the earthmoving industry. This paper presents the environmental effects to be considered when designing a solenoid for the earthmoving industry. It further explains the need for, and type of, test necessary to validate the design. Finally a review of production quality procedures, necessary to insure reliable production parts is discussed.
Technical Paper

Winterization of Commercial Vehicles to -50 F

1970-02-01
700709
The development trend in construction machinery has been to produce equipment having a high level of reliability. The dollar loss that occurs when a major piece of equipment breaks down on the job is sufficiently great to justify the cost of providing reliable operation. In the development of the North the need for increased reliability is greater than ever. In extreme low temperature conditions as found on the NORTH SLOPE operation in Alaska, the harshness of the environment places additional stress both on the equipment and the operators. The development of winterization kits for construction and heavy engineering equipment to date has been slow, probably because of a comparatively small market and because the work could be postponed or accomplished by protecting the equipment and operator by temporary means to meet the purpose. The results have not been economical or as efficient as desired but efficient enough to be acceptable.
Standard

Windshield Defrosting Systems Test Procedure and Performance Requirements—Trucks, Buses, and Multipurpose Vehicles

2000-09-29
HISTORICAL
J381_200009
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Current engineering practice prescribes that for laboratory evaluation of defroster systems, an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though under actual conditions such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area.
Technical Paper

Wind-Averaged Drag Determination for Heavy-Duty Vehicles Using On-Road Constant-Speed Torque Tests

2016-09-27
2016-01-8153
To investigate the feasibility of various test procedures to determine aerodynamic performance for the Phase 2 Greenhouse Gas (GHG) Regulations for Heavy-Duty Vehicles in the United States, the US Environmental Protection Agency commissioned, through Southwest Research Institute, constant-speed torque tests of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Torque was measured at the transmission output shaft and, for most tests, also on each of the drive wheels. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. Measuring wind-averaged drag from on-road tests has historically been a challenge. By collecting data in various wind conditions at multiple speeds over multiple days, a regression-based method was developed to estimate wind-averaged drag with a low precision error for multiple tractor-trailer combinations.
Journal Article

Wind Tunnel and Track Tests of Class 8 Tractors Pulling Single and Tandem Trailers Fitted with Side Skirts and Boat-tails

2012-04-16
2012-01-0104
A 1:10-scale wind tunnel development program was undertaken by the National Research Council of Canada and Airshield Inc. in 1994 to develop trailer side skirts that would reduce the aerodynamic drag of single and tandem trailers. Additionally, a second wind tunnel program was performed by the NRC to evaluate the fuel-saving performance of boat-tail panels when used in conjunction with the skirt-equipped single and tandem trailers. Side skirts on tandem, 8.2-m-long trailers (all model dimensions converted to full scale) were found to reduce the wind-averaged drag coefficient at 105 km/h (65 mi/h) by 0.0758. The front pair of skirts alone produced 75% of the total drag reduction from both sets of skirts and the rear pair alone produced 40% of that from both pairs. The sum of the drag reductions from front and rear skirts separately was 115% of that when both sets were fitted, suggesting an interaction between both.
Technical Paper

Wind Tunnel Test of Cab Extender Incidence on Heavy Truck Aerodynamics

2005-11-01
2005-01-3527
A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
Technical Paper

Wind Tunnel Evaluation of Potential Aerodynamic Drag Reductions from Trailer Aerodynamic Component Combinations

2015-09-29
2015-01-2884
The use of devices to reduce aerodynamic drag on large trailers and save fuel in long-haul, over-the-road freight operations has spurred innovation and prompted some trucking fleets to use them in combinations to achieve even greater gains in fuel-efficiency. This paper examines aerodynamic performance and potential drag reduction benefits of using trailer aerodynamic components in combinations based upon wind tunnel test data. Representations of SmartWay-verified trailer aerodynamic components were tested on a one-eighth scale model of a class 8 sleeper tractor and a fifty three foot, van trailer model. The open-jet wind tunnel employed a rolling floor to reduce floor boundary layer interference. The drag impacts of aerodynamic packages are evaluated for both van and refrigerated trailers. Additionally, the interactions between individual aerodynamic devices is investigated.
Technical Paper

Wind Tunnel Concepts for Testing Heavy Trucks

2016-09-27
2016-01-8144
The trucking industry is being encouraged by environmental and cost factors to improve fuel efficiency. One factor that affects fuel efficiency is the aerodynamic design of the vehicles; that is, the vehicles with lower aerodynamic drag will get better mileage, reducing carbon emissions and reducing costs through lower fuel usage. A significant tool towards developing vehicles with lower drag is the wind tunnel. The automobile industry has made great improvements in fuel efficiency by using wind tunnels to determine the best designs to achieve lower drag. Those wind tunnels are not optimum for testing the larger, longer heavy trucks since the wind tunnels are smaller than needed. The estimated costs for a heavy truck wind tunnel based on automotive wind tunnel technology are quite high. A potential nozzle concept to reduce wind tunnel cost and several other new possible approaches to lower wind tunnel costs are presented.
Standard

Wheel Chocks

2020-10-19
CURRENT
J348_202010
This SAE standard presents the basic information required for the design and manufacture of a wheel chock.
Technical Paper

Well-to Wheel Greenhouse Gas Emissions of LNG Used as a Fuel for Long Haul Trucks in a European Scenario

2013-09-08
2013-24-0110
The EU Commission's “Clean Power for Transport” initiative aims to break the EU's dependence on imported oil whilst promoting the use of alternative fuels to reduce greenhouse gas emissions. Among the options considered is the use of liquefied natural gas (LNG) as a substitute for diesel in long haul trucks. It is interesting to ask how the lifecycle greenhouse gas (GHG) emissions of LNG compare with conventional diesel fuel for this application. The LNG available in Europe is mainly imported. This paper considers the “well-to-tank” emissions of LNG from various production routes, including: gas production, treatment and liquefaction, shipping to Europe, terminal, distribution and refuelling operations. “Tank-to-Wheel” emissions are considered for a range of currently-available engine technologies of varying efficiency relative to diesel.
X