Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

1995-11-01
952610
Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
Technical Paper

Influence of Maladjustment on Emissions from Two Heavy-Duty Diesel Bus Engines

1984-02-01
840416
Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear can cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NOX emission levels, but higher CO emissions, smoke, and particulate.
Technical Paper

Emission Comparison of DDC 6V-92TA on Alcohol Fuels

1990-10-01
902234
The Detroit Diesel 6V-92TA engine has been redesigned to run on alcohol fuels to meet 1991 urban bus emission standards. A prototype engine was tested over the EPA transient procedure, using mixtures of methanol, ethanol (with and without water), gasoline, and ignition enhancer. Regulated and selected unregulated emissions were measured. Organic material hydrocarbon equivalent (OMHCE) emissions were significantly above the hydrocarbon emission standard; however, emissions of CO and NO, were below the 1991 emission standards for the fuel combinations used. Particulate emissions were close to the 1991 urban bus emission standard for some configurations. The method used for calculating OMHCE emissions when ethanol was used is also given.
Technical Paper

Effects of Fuel Aromatics, Cetane Number, and Cetane Improver on Emissions from a 1991 Prototype Heavy-Duty Diesel Engine

1990-10-01
902171
Several diesel fuel properties have been identified as having significant effects on diesel engine emissions. For heavy-duty diesel engines, fuel properties of aromatics, back end volatility (represented by the 90 percent boiling point), and sulfur were examined in a previous CRC VE-1 study in which reductions in all three properties decreased regulated emissions to varying degrees. Aromatic levels and cetane numbers were generally correlated in the previous study, so variation in emissions due to “aromatics” could not clearly be assigned to variation in aromatic levels alone. To separate the effects of aromatics and cetane number, a fuel set with controlled variation in aromatics and cetane number was developed, including the use of ignition improver to increase the cetane number of selected fuels. The fuel set was used in a 1991 Prototype DDC Series 60 heavy-duty diesel engine to examine regulated emissions over EPA transient cycle operation.
Technical Paper

Development of an I/M Short Emissions Test for Buses

1992-02-01
920727
Emissions from existing diesel-powered urban buses are increasingly scrutinized as local, state, and federal governments require enforcement of more stringent emission regulations and expectations. Currently, visual observation of high smoke levels from diesel-powered equipment is a popular indicator of potential emission problems requiring tune-up or engine maintenance. It is important that bus inspection and maintenance (I/M) operations have a quality control “test” to check engine emissions or diagnose the engine state-of-tune before or after maintenance. Ideally, the “emission test” would be correlated to EPA transient emissions standards, be of short duration, and be compatible with garage procedures and equipment. In support of developing a useful “short-test,” equipment was designed to collect samples of raw exhaust over a short time period for gaseous and particulate emissions.
X